留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透射式GaAs光电阴极时间分辨特性研究

韩明 郭欣 邱洪金 张若愚 贾甜甜 刘旭川 胡轶轩

韩明, 郭欣, 邱洪金, 张若愚, 贾甜甜, 刘旭川, 胡轶轩. 透射式GaAs光电阴极时间分辨特性研究[J]. 红外与激光工程, 2022, 51(8): 20210761. doi: 10.3788/IRLA20210761
引用本文: 韩明, 郭欣, 邱洪金, 张若愚, 贾甜甜, 刘旭川, 胡轶轩. 透射式GaAs光电阴极时间分辨特性研究[J]. 红外与激光工程, 2022, 51(8): 20210761. doi: 10.3788/IRLA20210761
Han Ming, Guo Xin, Qiu Hongjin, Zhang Ruoyu, Jia Tiantian, Liu Xuchuan, Hu Yixuan. Study on the time-resolved characteristics of the transmission-mode GaAs photocathode[J]. Infrared and Laser Engineering, 2022, 51(8): 20210761. doi: 10.3788/IRLA20210761
Citation: Han Ming, Guo Xin, Qiu Hongjin, Zhang Ruoyu, Jia Tiantian, Liu Xuchuan, Hu Yixuan. Study on the time-resolved characteristics of the transmission-mode GaAs photocathode[J]. Infrared and Laser Engineering, 2022, 51(8): 20210761. doi: 10.3788/IRLA20210761

透射式GaAs光电阴极时间分辨特性研究

doi: 10.3788/IRLA20210761
基金项目: 国家自然科学基金(61771245);国防基础科研计划(JCKY2018208 B016)
详细信息
    作者简介:

    韩明,男,工程师,硕士,主要从事光电阴极器件结构设计等方面的研究

  • 中图分类号: O462.3

Study on the time-resolved characteristics of the transmission-mode GaAs photocathode

Funds: National Natural Science Foundation of China (61771245);National Defense Basic Scientific Research Program(JCKY2018208 B016)
  • 摘要: 时间分辨特性是GaAs光电阴极应用于泵浦探测等领域的一种极为重要的性能参量。采用矩阵差分求解光电子扩散模型的方式计算了光电子连续性方程和出射光电子流密度方程,发现影响GaAs光电阴极时间分辨特性的因素包括GaAs/GaAlAs后界面复合速率、GaAs电子扩散系数和GaAs激活层厚度,之后较为系统地研究了这三种物理因素对GaAs光电阴极时间分辨特性的影响。研究结果表明,GaAs电子扩散系数和GaAs/GaAlAs后界面复合速率与光电阴极的响应速率存在非线性正比关系,且随着两者的增大,GaAs光电阴极将出现饱和响应速率。激活层厚度对GaAs光电阴极响应时间的影响最大,通过激活层厚度的适当减薄可以将GaAs光电阴极的响应时间缩短至20 ps,可满足绝大多数光子、粒子探测的快响应需求。该研究为快响应GaAs光电阴极的实验和应用提供了必要的理论支撑。
  • 图  1  传统透射式GaAs光电阴极能带图

    Figure  1.  Energy band diagram of traditional transmission-mode GaAs photocathode

    图  2  不同电子扩散系数下GaAs光电阴极出射光电子流密度随时间的变化曲线

    Figure  2.  Curve of the photoelectron current density with time in GaAs photocathode with different electron diffusion coefficients

    图  3  不同后界面复合速率下GaAs光电阴极出射光电子流密度随时间的变化曲线

    Figure  3.  Curve of the photoelectron current density with time in GaAs photocathode with different rear interface recombination rate

    图  4  不同激活层厚度下GaAs光电阴极出射光电子流密度随时间的变化曲线

    Figure  4.  Curve of the photoelectron current density with time in GaAs photocathode with different active layer thickness

    表  1  GaAs光阴极响应时间与电子扩散系数的对应关系表

    Table  1.   Correspondence table of GaAs photocathode response time and electron diffusion coefficient

    ItemValue
    Dn/cm2·s−13040506070
    ΔT/ps329249203170148
    下载: 导出CSV

    表  2  GaAs光阴极响应时间与后界面复合速率的对应关系表

    Table  2.   Correspondence table of GaAs photocathode response time and rear interface recombination rate

    ItemValue
    Sv/cm·s−1102103104105106
    ΔT/ps1354845313203191
    下载: 导出CSV

    表  3  GaAs光阴极响应时间与激活层厚度对应关系表

    Table  3.   Correspondence table of GaAs photocathode response time and active layer thickness

    ItemValue
    d/μm2.52.01.51.00.5
    ΔT/ps5333602039023
    下载: 导出CSV
  • [1] Vernon S P, Lowry M E. Ultrafast radiation detection by modulation of an optical probe beam [R]. United States: Lawrence Livermore National Lab, 2006.
    [2] Zhang Q, Yan J, Deng B, et al. An ultrafast X-ray scintillating detector made of ZnO (Ga) [J]. Journal of Instrumentation, 2017, 12(12): P12033. doi:  10.1088/1748-0221/12/12/P12033
    [3] Chen X, Zhang Z C, Zhang K, et al. Study on the time response of a barium fluoride scintillation detector for fast pulse radiation detection [J]. IEEE Transactions on Nuclear Science, 2020, 67(8): 1893-1898.
    [4] Sun Q X, Xu X Y, An Y B, et al. Numerical study on time response characteristics of InP/InGaAs/InP infrared photocathode [J]. Infrared and Laser Engineering, 2013, 42(12): 3163-3167. (in Chinese)
    [5] Wang Z H, Zhang Y J, Qian Y S, et al. UV–Vis–NIR broadband response of GaAs-based photocathode with multilayer graded-band cascade structure [J]. Superlattices and Microstructures, 2021, 156: 106957.
    [6] Jani H, Chen L, Duan L. Femtosecond pump-probe study of negative electron affinity GaAs/AlGaAs photocathodes [C]//Ultrafast Phenomena & Nanophotonics XXII, Proceedings of SPIE, 2018, 10530: 105300X.
    [7] Cerrito L. Scintillation Process and Light Detectors[M]. Berlin: Springer International Publishing, 2017.
    [8] Jani H P, Zhou R, Zhang Y, et al. Pump-probe study of ultrafast response of GaAs photocathodes grown by MOCVD and MBE [C]//Ultrafast Phenomena and Nanophotonics XXIV, Proceedings of SPIE, 2020, 1278: 12780R.
    [9] Tang W D, Yang W Z, Cai Z P, et al. The time response of exponential doping NEA InGaAs photocathode applied to near infrared streak cameras [J]. Advanced Materials Research, 2012, 415-417: 1403-1406.
    [10] Guo L, Li J, Hou X. Calculation of temporal response of field-assisted transmission-mode GaAs NEA photocathodes [J]. Solid State Electronics, 1990, 33(4): 435-439. doi:  10.1016/0038-1101(90)90047-I
    [11] Li X M, Zhou L W. Temporal characteristics of GaAs NEA and alkali metal photocathode [J]. Journal of Beijing Institute of Technology, 2003, 12(4): 381-384.
    [12] Militsyn B L, Burrows I, Cash R J, et al. Design of an upgrade to the ALICE photocathode electron gun [C]//Proceedings of EPAC, 2008: 235-237.
    [13] Hirori H, Shinokita K, Shirai M, et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse [J]. Nature Communications, 2011, 2: 594-599. doi:  10.1038/ncomms1598
  • [1] 郭思彤, 邱开放, 王文艳, 李国辉, 翟爱平, 潘登, 冀婷, 崔艳霞.  Au/TiO2复合纳米结构增强热电子光电探测器宽谱响应性能 . 红外与激光工程, 2023, 52(3): 20220464-1-20220464-11. doi: 10.3788/IRLA20220464
    [2] 詹燕燕, 李冰雪, 闫昊, 方铉, 王登魁, 房丹, 楚学影, 翟英娇, 李金华, 王晓华.  铋烯材料生长控制及光电子器件应用研究进展 . 红外与激光工程, 2023, 52(2): 20220371-1-20220371-15. doi: 10.3788/IRLA20220371
    [3] 林宏焘, 孙博姝, 马辉, 钟础宇, 巨泽朝.  中红外片上集成光电子综述(特邀) . 红外与激光工程, 2022, 51(1): 20211111-1-20211111-14. doi: 10.3788/IRLA20211111
    [4] 第四届国际光电子与微电子技术及应用大会 . 红外与激光工程, 2020, 49(6): -.
    [5] 成伟, 石峰, 杨书宁, 周玉鉴, 任彬.  Ⅲ族氮化物光电阴极原位程序升温脱附 . 红外与激光工程, 2019, 48(10): 1017002-1017002(7). doi: 10.3788/IRLA201948.1017002
    [6] 郭弘扬, 杜升平, 黄永梅, 付承毓.  液晶空间光调制器过驱动方法的FPGA实现 . 红外与激光工程, 2019, 48(7): 722002-0722002(7). doi: 10.3788/IRLA201948.0722002
    [7] 周振辉, 徐向晏, 刘虎林, 李岩, 卢裕, 钱森, 韦永林, 何凯, 赛小锋, 田进寿, 陈萍.  高量子效率InP/In0.53Ga0.47As/InP红外光电阴极模拟 . 红外与激光工程, 2019, 48(2): 221002-0221002(7). doi: 10.3788/IRLA201948.0221002
    [8] 孙浩, 周大勇, 张宏超, 陆健.  连续激光供能单结GaAs光电池输出特性仿真 . 红外与激光工程, 2017, 46(10): 1003006-1003006(8). doi: 10.3788/IRLA201751.1003006
    [9] 吴政南, 谢江容, 杨雁南.  光强均匀度对GaAs电池组光电转换效率的影响 . 红外与激光工程, 2017, 46(6): 606001-0606001(6). doi: 10.3788/IRLA201746.0606001
    [10] 王昊, 刘晶红, 邓永停, 张雪菲.  光电跟踪转台的控制模型辨识 . 红外与激光工程, 2016, 45(6): 617007-0617007(7). doi: 10.3788/IRLA201645.0617007
    [11] 任彬, 石峰, 郭晖, 焦岗成, 程宏昌, 王龙, 牛森, 袁渊.  GaAs光电阴极Cs,O吸附研究 . 红外与激光工程, 2016, 45(8): 821001-0821001(5). doi: 10.3788/IRLA201645.0821001
    [12] 任彬, 石峰, 郭晖, 江兆潭, 程宏昌, 焦岗成, 苗壮, 冯刘.  NEAGaN光电阴极第一性原理研究 . 红外与激光工程, 2015, 44(9): 2752-2756.
    [13] 刘晓艳, 王明甲, 郭方敏.  新原理光电探测阵列的微光响应测试研究 . 红外与激光工程, 2014, 43(8): 2546-2551.
    [14] 王文娟, 王少伟, 陆卫, 陈飞良, 张英, 孙晓岚, 李宁, 李志锋, 李雪.  激光选择聚焦的响应增强型光电探测器 . 红外与激光工程, 2014, 43(5): 1416-1420.
    [15] 范哲, 张春熹, 牛燕雄, 孙绪印, 罗娜, 潘建业.  光电探测器非线性响应对相干激光多普勒测速仪的影响 . 红外与激光工程, 2014, 43(7): 2103-2107.
    [16] 刘晖, 冯刘, 张连东, 程宏昌, 高翔, 张晓辉.  GaAs光阴极激活稳定性研究 . 红外与激光工程, 2014, 43(4): 1222-1225.
    [17] 张连东, 冯刘, 刘晖, 程宏昌, 高翔, 张晓辉.  高温退火对GaAs光阴极表面状态的影响 . 红外与激光工程, 2014, 43(4): 1226-1229.
    [18] 张连东, 冯刘, 刘晖, 程宏昌, 高翔, 苗壮.  均匀掺杂GaAs光阴极表面势垒特性研究 . 红外与激光工程, 2013, 42(8): 2181-2185.
    [19] 张李伟, 尚丽平, 唐金龙, 夏祖学, 邓琥.  34μm孔径GaAs偶极子光电导天线辐射特性仿真研究 . 红外与激光工程, 2013, 42(1): 108-112.
    [20] 孙巧霞, 徐向晏, 安迎波, 曹希斌, 刘虎林, 田进寿, 董改云, 郭晖, 李燕红.  InP/InGaAs/InP红外光电阴极时间响应特性的模拟研究 . 红外与激光工程, 2013, 42(12): 3163-3167.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  53
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-01-09
  • 刊出日期:  2022-08-31

透射式GaAs光电阴极时间分辨特性研究

doi: 10.3788/IRLA20210761
    作者简介:

    韩明,男,工程师,硕士,主要从事光电阴极器件结构设计等方面的研究

基金项目:  国家自然科学基金(61771245);国防基础科研计划(JCKY2018208 B016)
  • 中图分类号: O462.3

摘要: 时间分辨特性是GaAs光电阴极应用于泵浦探测等领域的一种极为重要的性能参量。采用矩阵差分求解光电子扩散模型的方式计算了光电子连续性方程和出射光电子流密度方程,发现影响GaAs光电阴极时间分辨特性的因素包括GaAs/GaAlAs后界面复合速率、GaAs电子扩散系数和GaAs激活层厚度,之后较为系统地研究了这三种物理因素对GaAs光电阴极时间分辨特性的影响。研究结果表明,GaAs电子扩散系数和GaAs/GaAlAs后界面复合速率与光电阴极的响应速率存在非线性正比关系,且随着两者的增大,GaAs光电阴极将出现饱和响应速率。激活层厚度对GaAs光电阴极响应时间的影响最大,通过激活层厚度的适当减薄可以将GaAs光电阴极的响应时间缩短至20 ps,可满足绝大多数光子、粒子探测的快响应需求。该研究为快响应GaAs光电阴极的实验和应用提供了必要的理论支撑。

English Abstract

    • 超快辐射指的是时间低于100 ps、涉及X射线至远红外波段的宽光谱范围以及α粒子、质子、中子等粒子的快速信号发射过程。通过对这些粒子或光波的研究可以有效还原和评估超快辐射过程,因此研究者们在这些光子、粒子超快现象的快响应探测器上进行了许多工作[1-3]。作为核爆γ射线辐射探测系统的核心部件,光电阴极的响应时间必须小于超快探测系统的时间分辨要求,且其发射的电子束必须具备尽可能小的横向扩散和尽可能小的纵向尺寸[4]。在各种光电阴极材料中,GaAs具有阈值波长可调、暗发射小、发射电子能量分布集中等优点,且相比于金属、碱-锑等光电阴极材料,GaAs具有更小的发射度,因此其在超快探测、窄脉冲激光等应用方面具备明显优势[5-8]。为了进一步提升GaAs光电阴极的时间分辨特性,研究者通过在GaAs材料内部构建内建电场的方式形成了梯度掺杂光电阴极[9]和指数掺杂光电阴极[6],通过给光电阴极添加外加电场的方式形成了场助光电阴极[10],加快了光电子在材料内部的传输速率,并设计了多种光电阴极结构,将GaAs光电阴极的响应时间提升至10 ps左右。然而这些结构的实现对光电阴极材料的外延工艺和器件的制备工艺提出了较高的要求,目前国内外还无法大规模量产变掺杂和场助光电阴极。还有研究者指出,通过将GaAs光电阴极的负电子亲和势调整为一个较小的正电子亲和势可以使得GaAs光电阴极的响应时间达到1 ps,但是这种方式会使得GaAs光电阴极的量子效率产生较大的衰减[11-12]。传统GaAs光电阴极具备较高的量子效率和成熟稳定的制备工艺,因此,文中在传统GaAs光电阴极的基础上研究后界面复合速率、电子扩散系数、激活层厚度对其时间响应特性的影响,为GaAs光电阴极的结构设计和材料参数设计提供理论依据,同时为快响应GaAs光电阴极的实验研究和应用提供必要的理论指导。

    • 图1为传统透射式GaAs光电阴极的能带图。根据Spicer光电发射“三步模型”理论,首先,光照下能量小于GaAlAs的禁带宽度而大于GaAs禁带宽度的光子被p-GaAs吸收而激发产生光生电子。其次,绝大多数光电子被激发到导带后处于能量较高的热电子状态,之后将通过散射同时向GaAlAs/GaAs界面和GaAs发射层表面(x=d)作扩散运动。最后,到达光电阴极表面的光电子隧穿表面势垒发射到真空中。影响GaAs光电阴极时间响应特性的主要因素为Spicer光电发射模型中第二步的电子扩散迁移行为。光电子通过扩散迁移在光电阴极体内的分布是时间的函数,通过矩阵差分求解GaAs激活层内光电子的连续性方程(公式(1))和一系列边界条件(公式(2)~(4)),可以求得GaAs光电阴极出射光电子流密度方程(公式(5))的数值解曲线,曲线的半峰宽即为透射式GaAlAs/GaAs光电阴极的响应时间。

      图  1  传统透射式GaAs光电阴极能带图

      Figure 1.  Energy band diagram of traditional transmission-mode GaAs photocathode

      $$ \frac{{\partial \Delta {{n}}}}{{\partial \tau }} = {{{D}}_n}\frac{{{\partial ^2}\Delta n}}{{\partial {x^2}}} - \frac{{\Delta n}}{{{\tau _n}}} $$ (1)
      $$ {\left. {\left[ {D{}_n\frac{{\partial \Delta n}}{{\partial x}} - s\Delta n} \right]} \right|_{x = 0}} = 0 $$ (2)
      $$ \Delta n(d,t) = 0 $$ (3)
      $$ \Delta n(x,0) = F \cdot {{\rm{e}}^{ - \alpha x}} $$ (4)
      $$ {\left. {j(t) = - {D_n} \cdot \frac{{\partial \Delta n(x,t)}}{{\partial x}}} \right|_{x = d}} $$ (5)

      式中:Δn为光生电子的分布;t为时间;Dn为光电子在GaAs界面的扩散系数;x为距离GaAlAs/GaAs界面的距离;τn为光电子在GaAs中的寿命;s为GaAlAs/GaAs界面的复合速率;d为GaAs激活层厚度;F为与GaAs吸收系数α相关的值:

      $$ F = \eta (1 - R) \cdot \frac{N}{A} \cdot \alpha \cdot \Delta t $$ (6)

      式中:R为GaAs光电阴极光照面的反射率;η为光生载流子的产生率;N为入射光子数;A为光阴极面积;α为GaAs的吸收系数;Δt为光源的脉冲宽度。

    • 从物理模型可以得出,对响应时间造成影响的主要物理参数包括GaAs激活层厚度d、GaAs电子扩散系数Dn和GaAs/GaAlAs界面的后界面复合速率Sv,现对这三种因素对GaAs光电阴极时间响应特性的影响进行系统的理论计算。目前传统GaAs光电阴极的电子扩散系数Dn=50 cm2/s,GaAs/GaAlAs界面的后界面复合速率Sv=105 cm/s,激活层厚度d=1.5 μm,在对其中一个参数进行计算分析时,另外两个参数保持上述值不变。研究中所采用的入射光波长为530 nm。

    • 图2为不同电子扩散系数下GaAs光电阴极出射光电子流密度随时间的变化曲线。从图中可以明显看出,随GaAs电子扩散系数的增大,GaAs光电阴极响应速率不断加快。电子扩散系数是单位浓度梯度作用下的粒子流密度,可用于表征电子在材料内部浓度梯度下的运动速率,电子扩散系数越大,电子运动速率越快,且电子扩散系数与电子迁移率之间存在Einstein正比关系。因此,随着电子扩散系数的增大,电子迁移率也增大,从而使得响应速率不断加快。

      图  2  不同电子扩散系数下GaAs光电阴极出射光电子流密度随时间的变化曲线

      Figure 2.  Curve of the photoelectron current density with time in GaAs photocathode with different electron diffusion coefficients

      表1为GaAs光电阴极响应时间与GaAs电子扩散系数的对应关系表。可以看出,随着电子扩散的不断增大,响应速率增长的速度不断变慢,当电子扩散系数增大到70 cm2/s后,响应速率基本达到饱和,不再随电子扩散系数的增大而增大。这主要是因为电子扩散系数不断增大,电子迁移速率不断加快,在GaAs这种双能谷半导体内,这些高能电子将向有效质量较大的次能谷中跃迁,此时将出现负电阻导致电子迁移率下降。同时,次能谷中的高能电子将与声子发生散射而损失能量,因而使得电子迁移速率达到饱和。

      表 1  GaAs光阴极响应时间与电子扩散系数的对应关系表

      Table 1.  Correspondence table of GaAs photocathode response time and electron diffusion coefficient

      ItemValue
      Dn/cm2·s−13040506070
      ΔT/ps329249203170148
    • GaAs/GaAlAs后界面复合速率指的是GaAs/GaAlAs界面处单位表面积电子-空穴对的复合数,图3为不同后界面复合速率下GaAs光电阴极出射光电子流密度随时间的变化曲线。从图中可以看出,GaAs光电阴极的响应速率随后界面复合速率的增大而加快。产生这种现象的原因在于界面复合中心浓度的增大导致更多的电子向复合中心补充,阴极内部局部电子聚集区域增多,一方面所形成的电势对电子的扩散迁移运动有一定的加速效果,另一方面所形成的局域电场会对GaAs/GaAlAs界面的能带结构会产生一定的影响,导致界面势垒的降低从而引起GaAs内部电子流密度的增大[13],因此使得GaAs光电阴极的响应速率加快。

      图  3  不同后界面复合速率下GaAs光电阴极出射光电子流密度随时间的变化曲线

      Figure 3.  Curve of the photoelectron current density with time in GaAs photocathode with different rear interface recombination rate

      表2为GaAs光电阴极响应时间与GaAs/GaAlAs后界面复合速率的对应关系表。可以看出,在后界面复合速率较小时,其对响应时间的影响较大,随后界面复合速率的增大响应速率快速增大。当其增大到约为106 cm/s时,响应速率达到饱和,不再随后界面复合速率的增大而增大。出现这种现象可能的原因为当后界面复合速率增大到一定值后,光电子的运动速率也增长到一个较大值,因此光电子具备较大的能量而发生能谷跃迁,出现负电阻和声子散射导致电子能量下降,最终电子运动速率达到稳定饱和。

      表 2  GaAs光阴极响应时间与后界面复合速率的对应关系表

      Table 2.  Correspondence table of GaAs photocathode response time and rear interface recombination rate

      ItemValue
      Sv/cm·s−1102103104105106
      ΔT/ps1354845313203191
    • 图4为不同激活层厚度下GaAs光电阴极出射光电子流密度随时间的变化曲线图,图中对GaAs光电阴极的出射光电子流密度进行了归一化处理。从图中可以明显看出,随着激活层厚度的降低,GaAs光电阴极的响应时间迅速减小,这主要是激活层厚度减小使得电子在向真空发射前在激活层内所需扩散迁移的距离变短,从而电子在阴极内部的扩散迁移时间变短,使得光电阴极的响应速率加快。

      图  4  不同激活层厚度下GaAs光电阴极出射光电子流密度随时间的变化曲线

      Figure 4.  Curve of the photoelectron current density with time in GaAs photocathode with different active layer thickness

      表3为GaAs光电阴极响应时间与激活层厚度的对应关系表。可以看出,激活层厚度从2.5 μm降低到0.5 μm,响应时间从533 ps缩短至23 ps,响应速率提升了22倍,可以满足大部分光子、粒子辐射探测系统的快响应需求。

      表 3  GaAs光阴极响应时间与激活层厚度对应关系表

      Table 3.  Correspondence table of GaAs photocathode response time and active layer thickness

      ItemValue
      d/μm2.52.01.51.00.5
      ΔT/ps5333602039023
    • 文中通过对光电子扩散模型的计算,较为系统地研究了电子扩散系数、激活层厚度及后界面复合速率对GaAs光电阴极时间分辨特性的影响。研究结果表明,以上三种物理因素对GaAs光电阴极的响应速率均有较大影响。当电子扩散系数和后界面复合速率增大到一定值后,GaAs光电阴极会产生最大饱和响应速率。激活层厚度对响应时间的影响最大,通过优化激活层厚度可以使GaAs光电阴极的响应时间缩短至20 ps左右,可满足大多数光子、粒子对探测系统光电阴极的时间分辨要求。文中的研究结果为进一步优化光电阴极的结构和材料参数提供了一定的理论依据,为快响应GaAs光电阴极的实验设计与应用提供了必要的理论支撑。

参考文献 (13)

目录

    /

    返回文章
    返回