留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光谐波调制的深孔内壁三维面型分析系统

李耀明 陈淑琴 张煌

李耀明, 陈淑琴, 张煌. 基于激光谐波调制的深孔内壁三维面型分析系统[J]. 红外与激光工程, 2022, 51(3): 20210862. doi: 10.3788/IRLA20210862
引用本文: 李耀明, 陈淑琴, 张煌. 基于激光谐波调制的深孔内壁三维面型分析系统[J]. 红外与激光工程, 2022, 51(3): 20210862. doi: 10.3788/IRLA20210862
Li Yaoming, Chen Shuqin, Zhang Huang. Three-dimensional surface profile analysis system of deep hole inner wall based on laser harmonic modulation[J]. Infrared and Laser Engineering, 2022, 51(3): 20210862. doi: 10.3788/IRLA20210862
Citation: Li Yaoming, Chen Shuqin, Zhang Huang. Three-dimensional surface profile analysis system of deep hole inner wall based on laser harmonic modulation[J]. Infrared and Laser Engineering, 2022, 51(3): 20210862. doi: 10.3788/IRLA20210862

基于激光谐波调制的深孔内壁三维面型分析系统

doi: 10.3788/IRLA20210862
基金项目: 装备预先研究领域基金项目(80923010401);山西回国留学人员科研资助项目(2021109,2021118);山西省留学人员科技活动项目择优资助项目(20200022,20210040);山西省面上青年基金项目(201901D211203)
详细信息
    作者简介:

    李耀明,男,副教授,博士,主要从事先进制造技术方面的研究

  • 中图分类号: TP391

Three-dimensional surface profile analysis system of deep hole inner wall based on laser harmonic modulation

Funds: Foundation of Equipment Pre-research Area, grant number 80923010401, the Research Project Supported by Shanxi Scholarship Council of China, grant number 2021109 and 2021118; Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, grant number 20200022 and 20210040; Shanxi Province Science Foundation for Youths, grant number 201901D211203
  • 摘要: 为了快速精确地获取深孔结构内壁三维面型,从而分析深孔加工质量,提出了一种基于激光谐波调制的线型扫描系统,设计了可深入深孔结构的反射式光学系统。研究了通过时间窗滤波的谐波匹配点云优化算法,该算法利用谐波调制相位范围对近轴线扫描区域进行阈值分离,从而完成点云数据的滤波。实验针对三种不同类型的深孔进行了测试,并采用Handyscan三维成像仪进行了点云数据对比。文中对5 cm×5 cm的内壁区域进行了量化分析, 对比了优化前后的三维点云图像。优化前的点云中明显包含很多杂散点,综合平均偏差为0.53 mm,而采用优化后,噪声被有效抑制,综合平均偏差降为0.12 mm。在x轴方向上,系统位置偏差均值为0.240 mm,在y轴方向上,系统位置偏差均值为0.228 mm。由于优化后降低了需要计算的点云总量,故其收敛速度也有一定的改善,在3000点以上趋于稳定,约为优化前用时的65.8%。可见该系统适用于深孔内壁三维面型检测,为深孔测试与数据降噪提供了新的思路。
  • 图  1  深孔内壁三维面型检测系统

    Figure  1.  Three-dimensional surface profile detection system for the inner wall of a deep hole

    图  2  谐波匹配点云优化算法程序流程图

    Figure  2.  Harmonic matching point cloud optimization algorithm program flow chart

    图  3  点云分布对比图

    Figure  3.  Comparison of point cloud distribution

    图  4  不同方向上位置偏差对比

    Figure  4.  Comparison of position deviations in different directions

    图  5  不同采样点数下的运算耗时

    Figure  5.  Operation time consumption under different number of sampling points

  • [1] Xu J, Xi N, Zhang C, et al. Real-time 3 D shape inspection system of automotive parts based on structured light pattern [J]. Optics & Laser Technology, 2011, 43(1): 1-8.
    [2] Zhu Y, Wang L P, Gu Y G, et al. Three-dimensional inner surface inspection system based on circle- structured light [J]. Journal of Manufacturing Science and Engineering, 2018, 140(12): 121007. doi:  10.1115/1.4041480
    [3] Barone S, Paoli A, Razionale A V. Shape measurement by a multi-view methodology based on the remote tracking of a 3 D optical scanner [J]. Optics and Lasers in Engineering, 2012, 50(3): 380-390. doi:  10.1016/j.optlaseng.2011.10.019
    [4] Dong Y C, Fang C S, Zhu L L, et al. The calibration method of the circle-structured light measurement system for inner surfaces considering systematic error [J]. Measurement Science and Technology, 2021, 32(7): 075012. doi:  10.1088/1361-6501/abe288
    [5] Tao W J, Zhong Y, Feng H T, et al. Model for wear prediction of roller linear guides [J]. Wear, 2013, 305: 260-266. doi:  10.1016/j.wear.2013.01.047
    [6] Kamalzadeh A, Daniel J G, Erkorkmaz K. Robust compensation of elastic deformations in ball screw drives [J]. International Journal of Machine Tools & Manufacture, 2010, 50: 559-574.
    [7] Zhu B, Xie L J, Yang T J, et al. An adaptive calibration algorithm for projected images in daily environment [J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(7): 941-948. (in Chinese) doi:  10.3969/j.issn.1003-9775.2012.07.014
    [8] Yokota M, Koyama T, Takeda K. Digital holographic inspection system for the inner surface of a straight pipe [J]. Optics & Lasers in Engineering, 2017, 97: 62-70. doi:  10.1016/j.optlaseng.2017.05.012
    [9] Almaraz Cabral C C, Gonzalez-Barbosa J J, Villa J, et al. Fringe projection profilometry for panoramic 3 D reconstruction [J]. Optics & Lasers in Engineering, 2016, 78: 106-112.
    [10] Wang Y, Zhang R. In-pipe surface circular structured light 3 D vision inspection system [J]. Infrared and Laser Engineering, 2014, 43(3): 891-896. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.03.040
    [11] Ding C, Tang L W, Cao L J, et al. Image distortion correction algorithm for complicated deep-hole profile using structured-light [J]. Infrared and Laser Engineering, 2017, 46(12): 1217008. (in Chinese)
    [12] Zhang Z Y, Yang Q Z, Yu Z Q, et al. Research on digital detector for detecting the flaws of anti-aircraft artillery barrel [J]. Acta ArmamentarII, 2015, 36(4): 590-594. (in Chinese) doi:  10.3969/j.issn.1000-1093.2015.04.003
    [13] Leng H W, Xu C G, Feng Z W, et al. A method for measuring complicated deep-hole profile based on ring structured light [J]. Journal of Image and Graphics, 2010, 15(7): 1084-1090. (in Chinese) doi:  10.11834/jig.20100702
    [14] Li Y M, Guan L M, Wang H F, et al. Three-dimensional detection system of rotating scanning structured light and its calibration [J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(7): 66-73. (in Chinese)
  • [1] 孟祥盛, 李乐堃.  数字化激光扫描成像引信低空海面背景目标识别方法 . 红外与激光工程, 2023, 52(4): 20220548-1-20220548-12. doi: 10.3788/IRLA20220548
    [2] 胡以华, 赵禄达.  激光成像处理技术研究现状及展望(特邀) . 红外与激光工程, 2023, 52(6): 20230169-1-20230169-21. doi: 10.3788/IRLA20230169
    [3] 徐国权, 李广英, 万建伟, 许可, 董光焰, 程光华, 王兴, 韩文杰, 马燕新.  脉冲调制激光雷达水下成像系统 . 红外与激光工程, 2022, 51(3): 20210204-1-20210204-8. doi: 10.3788/IRLA20210204
    [4] 孟祥盛, 李京, 李乐堃, 李铁.  基于阵列激光波形特征识别的激光引信抗干扰方法 . 红外与激光工程, 2022, 51(9): 20210837-1-20210837-8. doi: 10.3788/IRLA20210837
    [5] 邵新杰, 潘硕, 宋彬, 李晓磊, 唐香珺.  深孔内表面检测点云拼接技术研究 . 红外与激光工程, 2021, 50(12): 20210210-1-20210210-8. doi: 10.3788/IRLA20210210
    [6] 孙俊灵, 马鹏阁, 郭清源, 韩红印, 李伟, 陶然.  低信噪比下机载平台多脉冲激光测距机目标回波降噪算法 . 红外与激光工程, 2021, 50(6): 20210005-1-20210005-9. doi: 10.3788/IRLA20210005
    [7] 赵嘉熠, 谷一英, 胡晶晶, 李建, 赵明山, 韩秀友.  次谐波调制下光注入DFB-LD结构的可调谐光电振荡器 . 红外与激光工程, 2021, 50(10): 20200457-1-20200457-7. doi: 10.3788/IRLA20200457
    [8] 刘向锋, 黄庚华, 张志杰, 王凤香, 舒嵘.  高分七号激光测高中全波形回波数据的EMD降噪 . 红外与激光工程, 2020, 49(11): 20200261-1-20200261-10. doi: 10.3788/IRLA20200261
    [9] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [10] 丁超, 唐力伟, 曹立军, 邵新杰, 邓士杰.  深孔内表面结构光三维重构 . 红外与激光工程, 2018, 47(11): 1117004-1117004(7). doi: 10.3788/IRLA201847.1117004
    [11] 安晓峰, 李艳秋, 马海钰, 桑爱军.  Hadamard编码调制关联成像的阈值处理研究 . 红外与激光工程, 2018, 47(10): 1041002-1041002(6). doi: 10.3788/IRLA201847.1041002
    [12] 谢绍禹, 赵毅强, 王永乐, 吕华, 贾晓东.  基于盖革APD阵列的微扫描激光成像技术 . 红外与激光工程, 2018, 47(12): 1206010-1206010(5). doi: 10.3788/IRLA201847.1206010
    [13] 徐均琪, 苏俊宏, 葛锦蔓, 基玛 格拉索夫.  光学薄膜激光损伤阈值测量不确定度 . 红外与激光工程, 2017, 46(8): 806007-0806007(7). doi: 10.3788/IRLA201746.0806007
    [14] 丁超, 唐力伟, 曹立军, 邵新杰, 邓士杰.  复杂深孔内轮廓结构光图像畸变矫正算法 . 红外与激光工程, 2017, 46(12): 1217008-1217008(7). doi: 10.3788/IRLA201746.1217008
    [15] 黄宇翔, 张鸿翼, 李飞, 徐卫明, 胡以华.  相位调制激光雷达成像设计及仿真 . 红外与激光工程, 2017, 46(5): 506003-0506003(6). doi: 10.3788/IRLA201746.0506003
    [16] 周鹏威, 卢田, 张益溢, 李宁钏, 李廷安.  功率和谐波同步检测的马赫曾德调制器偏压控制技术 . 红外与激光工程, 2016, 45(12): 1220002-1220002(6). doi: 10.3788/IRLA201645.1220002
    [17] 马秀荣, 王夏洋.  低温条件下光学厚度对Tm3+:YAG 材料光谱烧孔孔深的影响 . 红外与激光工程, 2015, 44(3): 964-968.
    [18] 周鑫, 孙剑峰, 姜鹏, 王海虹, 王骐.  日光对532nm激光成像性能影响实验分析 . 红外与激光工程, 2015, 44(5): 1432-1437.
    [19] 靳辰飞, 胡鹏, 张思琦, 刘丽萍, 赵远, 谭立英.  增益调制激光雷达弱信号的双阈值处理分析 . 红外与激光工程, 2014, 43(8): 2447-2452.
    [20] 许凯达, 金伟其, 刘敬, 裘溯, 田训卿.  基于激光距离选通成像的非视域成像应用 . 红外与激光工程, 2012, 41(8): 2073-2078.
  • 加载中
图(5)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  72
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-20
  • 录用日期:  2021-12-16
  • 刊出日期:  2022-04-07

基于激光谐波调制的深孔内壁三维面型分析系统

doi: 10.3788/IRLA20210862
    作者简介:

    李耀明,男,副教授,博士,主要从事先进制造技术方面的研究

基金项目:  装备预先研究领域基金项目(80923010401);山西回国留学人员科研资助项目(2021109,2021118);山西省留学人员科技活动项目择优资助项目(20200022,20210040);山西省面上青年基金项目(201901D211203)
  • 中图分类号: TP391

摘要: 为了快速精确地获取深孔结构内壁三维面型,从而分析深孔加工质量,提出了一种基于激光谐波调制的线型扫描系统,设计了可深入深孔结构的反射式光学系统。研究了通过时间窗滤波的谐波匹配点云优化算法,该算法利用谐波调制相位范围对近轴线扫描区域进行阈值分离,从而完成点云数据的滤波。实验针对三种不同类型的深孔进行了测试,并采用Handyscan三维成像仪进行了点云数据对比。文中对5 cm×5 cm的内壁区域进行了量化分析, 对比了优化前后的三维点云图像。优化前的点云中明显包含很多杂散点,综合平均偏差为0.53 mm,而采用优化后,噪声被有效抑制,综合平均偏差降为0.12 mm。在x轴方向上,系统位置偏差均值为0.240 mm,在y轴方向上,系统位置偏差均值为0.228 mm。由于优化后降低了需要计算的点云总量,故其收敛速度也有一定的改善,在3000点以上趋于稳定,约为优化前用时的65.8%。可见该系统适用于深孔内壁三维面型检测,为深孔测试与数据降噪提供了新的思路。

English Abstract

    • 深孔类零件在机械结构中应用广泛,如各种类型的管道、枪炮管、泵体管道等[1]。在很多领域中,管体内壁面型结构、损伤程度等对结构体应用效果具有很大影响,故对深孔结构内壁的检测成为了一项研究热点[2]。针对深孔内壁几何尺寸、表面状态等的检测值成为了深孔加工结果的重要评价指标。

      目前,常见的深孔内壁检测方法包括:接触点测法、涡流法、超声成像法、激光扫描法等。接触法精度高,可实现高精度空间点位置分析,但需要接触测量检测容易造成结构损伤,同时,接触法在深孔孔径较小时无法测量[3];涡流法可以实现快速非接触测量,但对深孔深度大的结构体而言,其精度低,易受干扰,且该种方法仅适用于电导体[4];超声成像法可以获取较完整的面型分布信息,但是其精度较低[5]。激光扫描法精度高且可获取三维面型分布数据,但传统方法速度慢,并且对于深度大且孔径小的深孔无法探测[6-7]

      综上所述,在非接触测量与保证高精度的前提下,对激光扫描的测量方法进行改进是较为理想的设计意思。故国内外很多研究团队将激光扫描、结构光检测、多图像拼接等技术应用于深孔内壁测试,Yokota等[8]人利用全息技术获取了深孔零件的内壁信息,速度快、精度高,但对测试结构内壁的平滑程度有一定要求,即主要适用于较为具有较高反光性能的内壁结构,测试精度可达0.0387 mm,但由于全息技术对光学条件的比较苛刻,只能适用于精密表面结构。Almaraz等[9]人通过条纹投影技术获取不同相位的数据,再通过数据融合实现对孔径内壁的三维重构,相比点扫描式系统其测试速度大幅提升,绝对误差为0.78 mm,但由于其系统结构较大只能应用于大孔径深孔结构。王颖[10]等人通过机器视觉设计了多角度图像融合算法,实现了圆柱结构管道内壁面型结构测量。丁超[11]等人采用线激光器配合CCD获得了深孔凹槽结构的三维信息,合理的角度分布得到了更高的测量精度。张振友[12]等人采用数字式图像分析系统完成了高炮炮管内壁裂纹的定量分析。

      在此基础上,文中设计了一种可深入深孔内部的激光扫描结构,并提出采用谐波计算的方式抑制信号混叠。该系统通过线扫描提高检测速度,通过谐波计算降低内壁干扰,并且由于其探测结构的伸缩性,可以适用于深度大、孔径小的深孔结构。

    • 由于系统需要应用于深孔结构探测,所以传统的激光扫描无法照射,该系统硬件上采用单振镜与45°反射镜联用的形式实现对深孔内壁加工质量的测量与分析。由于探头段仅固定反射镜,所以其结构可以做的比较小巧,从而适用于小孔径深孔结构。同时,由于反射镜固定,所以近轴条件有限,扫描振镜范围即使偏大也会由于反射镜位置固定,而导致仅有近轴光线可以成像。算法上通过谐波测距的方式抑制混叠信号的干扰。系统总体设计结构如图1所示。

      图1中,处理系统通过调制模块控制激光器产生谐波信号,激光经过半透半反振镜入射至深孔内的45°反射镜上,同时,处理模块还通过伺服电机控制振镜扫描,扫描方向与深孔内反射镜的深度方向一致。与振镜配合的反射镜是可以根据深孔深度进行伸缩调节的,为了保证测量精度,另反射镜中心位置经过激光器光轴,所以采用工装台进行固定。激光从光源发射后在反射镜位置发生反射,反射光照射在需要测试的深孔内壁位置上,内壁上的反射光会延反射镜照射到振镜上,由于振镜右侧有反射镀膜,所以会将反射信号照射在柱面镜上,最终成像于CCD。CCD1和CCD2分别通过柱面镜完成对近轴位置光信号的汇聚,从而得到能量集中的内壁表面反射信号。CCD通过采集模块将数据发送给处理模块,同时,经解调模块计算回波的距离信息量,从而为消除内壁多次折射的噪声信号提供距离信息分量。最终,处理系统根据三维重建算法完成对深孔内壁三维面型的分析。

      图  1  深孔内壁三维面型检测系统

      Figure 1.  Three-dimensional surface profile detection system for the inner wall of a deep hole

    • 激光照射到深孔内壁后[13],由于内壁不是平面,所以反射光变成了受内壁曲率及反射率影响的漫反射光,但可以看出,只有和入射光角度相近的角度范围才能直接通过反射镜反射至振镜,从而被CCD1和CCD2采集得到,而角度超过该阈值时必然会在管内形成多次漫反射,即使能够最终达到振镜面,其达到时间也明显慢于测试位置的光信号,所以采用谐波调制的方式可以通过回波信号相位信息将不再时间窗函数中的数据剔除,从而提升检测信噪比。

      设CCD1的坐标系O1(x1, y1, z1),CCD2的坐标系O2(x2, y2, z2),与之对应的像面可表示为OL1(xL1, yL1)和OL2(xL2, yL2)。则深孔内壁上测试区域中任意点P(xP, yP, zP)可以通过两个CCD的测试数据进行联合求解。

      $$ \left[ {\begin{array}{*{20}{c}} {{x_1}} \\ {{y_1}} \\ {{\textit{z}_1}} \\ 1 \end{array}} \right]{\text{ = }}\left[ {\begin{array}{*{20}{c}} {{r_{11}}}&{{r_{12}}}&{{r_{13}}}&{{t_1}} \\ {{r_{21}}}&{{r_{22}}}&{{r_{23}}}&{{t_2}} \\ {{r_{31}}}&{{r_{32}}}&{{r_{33}}}&{{t_3}} \\ 0&0&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_2}} \\ {{y_2}} \\ {{\textit{z}_2}} \\ 1 \end{array}} \right] $$ (1)
      $$ R = \left[ {\begin{array}{*{20}{c}} {{r_{11}}}&{{r_{12}}}&{{r_{13}}} \\ {{r_{21}}}&{{r_{22}}}&{{r_{23}}} \\ {{r_{31}}}&{{r_{32}}}&{{r_{33}}} \end{array}} \right]\text{,}T = \left[ {\begin{array}{*{20}{c}} {{t_1}} \\ {{t_2}} \\ {{t_3}} \end{array}} \right] $$ (2)

      式中:R为两个CCD的旋转矩阵;T为两个CCD的平移矩阵。在RT中,参数r11~r33t1t2t3是根据两个CCD的预设位置和两个CCD空间坐标系的关系计算得到的。由此可见,将CCD1中的数据统一到CCD2中后,就能将目标位置的点数据进行解算。对于待测点P而言,对于CCD1可表示为:

      $$ \left[ {\begin{array}{*{20}{c}} {{x_1}} \\ {{y_1}} \\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{c_1}}&0&0&0 \\ 0&{{c_1}}&0&0 \\ 0&0&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_P}} \\ {{y_P}} \\ {{\textit{z}_P}} \\ 1 \end{array}} \right] $$ (3)

      CCD2可表示为:

      $$ \left[ {\begin{array}{*{20}{c}} {{x_2}} \\ {{y_2}} \\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{c_2}}&0&0&0 \\ 0&{{c_2}}&0&0 \\ 0&0&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_P}} \\ {{y_P}} \\ {{\textit{z}_P}} \\ 1 \end{array}} \right] $$ (4)

      式中:c1c2表示坐标转换系数。

      将公式(2)代入公式(3)和公式(4)可以得到P点的坐标表达式为:

      $$ \left\{ \begin{gathered} {X_P}\left| {_1} \right. = \frac{{{x_1}}}{{{c_1}}}{Z_P} \hfill \\ {Y_P}\left| {_1} \right. = \frac{{{y_1}}}{{{c_1}}}{Z_P} \hfill \\ {Z_P}\left| {_1} \right. = \frac{{{c_1}\left( {{c_2}{t_1} - {x_2}{t_3}} \right)}}{{{x_2}{k_1} - {c_2}{k_2}}} \hfill \\ \end{gathered} \right. $$ (5)

      其中,c1c2表示坐标转换系数,k1k2为解算系数,则:

      $$ \left\{ \begin{gathered} {k_1} = {r_{31}}{x_1} + {r_{32}}{y_1} + {c_1}{r_{33}} \hfill \\ {k_2} = {r_{11}}{x_1} + {r_{12}}{y_1} + {c_1}{r_{13}} \hfill \\ \end{gathered} \right. $$ (6)

      由于测试深孔内壁前,系统可以通过标定获取旋转矩阵和平移矩阵的参数值,故P点的坐标值变成通过两组已知测量量求解一组未知量的计算。

    • 采用柱面镜获取线激光,从而对深孔内壁进行线扫描可以大幅提升系统采集速度,相比于传统单点采集成像具有更广泛的应用前景[14]。但其面临的问题也是很明显的,深孔不同位置都会对激光束产生漫反射回波,这些激光叠加在一起后难以被分离,从而造成测试点计算误差大和出现虚假点的问题。由此,文中提出了一种谐波匹配的点云优化算法,核心思想是先对光源进行谐波调制,从而使入射激光随相位变化而具有预设的调制强度,故只有在相位差相近的区域其才能与光源的相位值匹配,达到对回波信号滤波的效果。该滤波相当于为测试区域提供了一个关于距离信息的时间窗函数T,该时间窗的最大值Tmin和最下值Tmax分别对应着近轴条件下谐波函数调制范围中的最大值和最下值,即延深孔孔轴方向符合近轴扫描的两个极限位置。该函数可以将符合近轴条件的成像点提取,并根据孔深D、孔径R及CCD间距L完成二维坐标(x, y)到三维目标点(x, y, z)的映射计算。当遍历所有点后就能获取优化后的三维重建图像。

      算法实现步骤如下:

      (1)根据孔深D和孔径R设置谐波参数T,计算符合线激光扫描近轴条件的区域,并将该区域的像面调整至CCD1和CCD2的感光面位置;

      (2)依据近轴光范围计算时间窗阈值TminTmax,并将其导入数据存储单元;

      (3)将所有CCD1和CCD2的测试数据导入数据存储单元;

      (4)通过时间阈值窗函数对所有数据点进行判断,剔除不符合时间窗的数据点,将符合的数据点重新整理形成有效二维数据集合;

      (5)采用三维重建算法完成(x, y)~(x, y, z)的解算,实现三维目标成像。

      整体过程的程序流程如图2所示。

      图  2  谐波匹配点云优化算法程序流程图

      Figure 2.  Harmonic matching point cloud optimization algorithm program flow chart

    • 为了对比不同深孔的光学检测效果,分别选用了三种深孔类型:(1) 孔深5 cm,孔径5 cm;(2) 孔深15 cm,孔径9 cm;(3) 孔深50 cm,孔径15 cm。通过该系统获取孔内壁点云信息,然后将重建的内壁三维面型与理想深孔数模点云位置进行对比,分析深孔加工偏差程度。

      插入深孔的反射镜直径为4 cm,对光轴近轴范围的线激光反射并成像于两个固定位置CCD上,振镜扫描速度为10次/s,采集得到的点云通过MATLAB进行滤波。滤波函数与谐波信号匹配,对光程不符合测试范围的测试点进行剔除,然后对剩余有效点云进行三维重建,一个谐振调制周期的重建结果见图3

      图  3  点云分布对比图

      Figure 3.  Comparison of point cloud distribution

      图3 (a)和(b)可以看出,在采用谐波匹配点云优化算法前,点云总量大,但有很多点的位置偏差明显较大,分析认为这些点很多是由于在深孔内壁进行一次或多次反射叠加产生的,所以已经无法反映真实的深孔内壁位置信息。而通过与谐波频率匹配的闸门信号对CCD采集信号进行滤波,就能将非一次反射的回波信号屏蔽,从而仅获取扫描线激光近轴条件的回波信号。平均偏差从0.53 mm降低至0.12 mm。可见,采用优化算法对于提升深孔内壁点云获取速度和抑制杂散点具有很好的效果。

    • 为了验证该系统计算的内壁点坐标位置精确程度,采用切割机将深孔从中间切开,从而获得一个内半圆柱表面,该表面就是深孔内壁的一次。若该表面测试结果符合设计要求,则可认为在反射镜测试区域对称的深孔中,三维面型的获取是一致的。采用Handyscan对相同测试区域的内壁面进行扫描,然后对比两组数据之间位置偏差,从而分析系统的位置计算精度。位置偏差如图4所示。

      图  4  不同方向上位置偏差对比

      Figure 4.  Comparison of position deviations in different directions

      图4 (a)和(b)可以看出,系统计算得到的点位置在x轴和y轴上与Handyscan的测试数据相近。x轴上绝大多数测试点位置偏差在0.1~0.4 mm之间,均值为0.240 mm;y轴上绝大多数测试点位置偏差在0.1~0.4 mm之间,均值为0.228 mm。其截面距离关系有:

      $$ d = \sqrt {{x^2} + {y^2}} $$ (7)

      故两个方向上的综合测试精度均值为0.234 mm。总体上看,系统对深孔内壁三维面型检测的精度优于引言中较通用的内壁面型检测方法。

    • 通过对比相同范围深孔内壁的三维面型数据获取时间,分析讨论了算法优化前后的用时,并对5 cm×5 cm范围的三维重建进行分析,以在固定范围内递增采样点数的方式对比算法的收敛速度,测试结果如图5所示。

      图  5  不同采样点数下的运算耗时

      Figure 5.  Operation time consumption under different number of sampling points

      根据不同采样点数对应的计算时间可以看出,当总采样点数较小的时候,优化前后的差异不大,基本都是在2.4 s左右完成三维点云数据的重建。但是当固定测试区域中的采样点逐渐增加时,优化算法的效果就逐渐明显了,当采样点超过2000个时,两种算法的用时曲线发生分离,当达到3500点左右时,优化后算法基本保持在12.4 s,而优化后仅为7.9 s。由于测试限定范围区间,所以采样点数设定在5000个以下,由此可以看出采用谐波匹配滤波算法进行优化可以有效降低系统的运算时间成本。

    • 文中设计了一种基于激光谐波调制的深孔内壁三维面型检测系统。该系统通过深入孔内的反射镜实现深孔内壁任意位置的点云采集,通过谐波相位匹配算法实现杂散信号的抑制。实验结果显示,优化后点云总量降低、位置检测精度提高并且收敛用时减少,相比Handyscan设备的测试结果而言,该系统的测试偏差符合设计要求,在深孔内壁三维面型检测领域具有很好的应用前景。

参考文献 (14)

目录

    /

    返回文章
    返回