留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带消色差红外光学超构透镜研究进展(特邀)

欧凯 郁菲茏 陈金 李冠海 陈效双

欧凯, 郁菲茏, 陈金, 李冠海, 陈效双. 宽带消色差红外光学超构透镜研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 20211003. doi: 10.3788/IRLA20211003
引用本文: 欧凯, 郁菲茏, 陈金, 李冠海, 陈效双. 宽带消色差红外光学超构透镜研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 20211003. doi: 10.3788/IRLA20211003
Ou Kai, Yu Feilong, Chen Jin, Li Guanhai, Chen Xiaoshuang. Research progress of broadband achromatic infrared metalens (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211003. doi: 10.3788/IRLA20211003
Citation: Ou Kai, Yu Feilong, Chen Jin, Li Guanhai, Chen Xiaoshuang. Research progress of broadband achromatic infrared metalens (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211003. doi: 10.3788/IRLA20211003

宽带消色差红外光学超构透镜研究进展(特邀)

doi: 10.3788/IRLA20211003
基金项目: 国家重点研发计划(2018YFA0306200);国家自然科学基金(61875218);国家重点研发计划量子调控与量子信息专项(SQ2018YFA030069)
详细信息
    作者简介:

    欧凯(1988−),男,博士生,研究方向为人工微结构光场调控物理理论与实验研究,主要从事宽带消色差超构透镜,光子自旋-轨道角动量相互作用机理及其红外超构光子器件方面的应用研究。在包括Science子刊,Nanoscale, Opt Lett, Opt Express和Opt Commun等国际SCI收录刊物发表论文10余篇。第一作者在Science Advances,Nanoscale国际顶级期刊发表研究论文2篇,共同一作1篇,申请专利1项。获得博士研究生国家奖学金,中国科学院三好学生,中国科学院上海技术物理研究所一等学业奖学金等。

    李冠海(1987),男,副研究员,博士。入选上海市青年科技启明星计划、扬帆计划,入选中国科学院青年创新促进会,担任Journal of Physics D: Applied Physics期刊顾问委员会委员。主要从事新型人工微结构增强的红外探测器研究。在包括Nature Communications,Science Advances等刊物发表论文30多篇。主持和参与科技部纳米专项、国家自然科学基金面上项目等多项研究项目

    陈效双(1963−),男,研究员,博士。现任红外物理国家重点实验室主任,国家杰出青年基金获得者,新世纪百千万人才工程国家级人才,享受国务院政府特殊津贴。主要从事红外光电子材料与器件研究,在包括Science子刊, Nat子刊,Phys Rev Lett,JACS,Nano Lett,Adv Matt.等刊物发表论文100多篇。先后主持科技部量子调控与量子信息专项项目、基金委重大项目、上海市科委重大项目等多项研究项目,获国家自然科学二等奖、国家技术发明二等奖等。

  • 中图分类号: O436.3

Research progress of broadband achromatic infrared metalens (Invited)

  • 摘要: 超构透镜是由亚波长散射单元结构排列而成的具有聚焦功能的平面二维超构表面。超构表面能够在亚波长尺度上操控光场的振幅、相位、色散和偏振态,是近年来迅速发展起来的新型光场调控载体。亚波长共振纳米结构使得高阶衍射被抑制,入射光场可以完美地被调制到设计的衍射级次上,从而确保了超构表面器件具有高的光子调控效率。同时,超构单元在设计上的灵活性及其特定的电磁响应使得超构表面可以实现对光场多个维度的定制化操控。不同于传统光学透镜依赖光传播的相位累积效应,宽带消色差超构透镜通过对光场相位和相位色散的同时独立调控解决了传统通过级联多个透镜修正色差造成的光学系统复杂和体积庞大限制,为发展小型化片上集成光学提供了全新的思路。文中围绕超构透镜的相关研究,首先介绍了超构表面调控光场振幅、相位和偏振态的基本原理,在此基础上,重点回顾了近年来关于超透镜的研究发展,包括通过单一参量调控的单波长超透镜的实现,以及通过对光场偏振、相位及相位色散的多参量联合调控的多功能宽带消色差超构透镜的发展现状,最后讨论其进一步发展的可能挑战与应用前景。
  • 图  1  (a)反射型和透射型超表面的几何相位调控机理 [19-20];(b)共振相位型超构表面设计原理[21];(c)基于波导传输相位的高对比度介质超表面HCMs (high-contrast metasurfaces)设计[23];(d)利用超构原子在单元周期内的相对位移实现迂回相位的超构表面设计[24]

    Figure  1.  (a) Geometric phase control mechanism for reflective and transmissive metasurfaces [19-20]; (b) Design principle of resonant phase metasurface [21]; (c) Design of high-contrast metasurfaces (HCMs) based on waveguide transmission phase [21]; (d) Utilizing the relative displacement of the meta-atoms in the unit period to realize the detour phase effect and the design of the metasurface[24]

    图  2  (a)基于非对称超构原子的超高数值孔径(NA>0.99)超构透镜[26];(b)基于几何相位的透射型超构透镜 [27];(c)基于HCMs超表面平台的近红外波长偏振不敏感超构透镜[28];(d) 基于Si/MgF2超表面平台的中波红外偏振不敏感超构透镜[29];(e)基于惠更斯超构表面的线偏振中红外波长超薄超构透镜[30]

    Figure  2.  (a) Ultra-high numerical aperture (NA>0.99) meta-lens based on asymmetric metaatoms[26]; (b) Transmissive metalens based on geometric phase[27]; (c) Near-infrared wavelength polarization-insensitive metalens based on HCMs meta-surface platform[28]; (d) Mid-wavelength infrared polarization-insensitive metalens based on the Si/MgF2 metasurface platform[28]; (e) Linearly polarized mid-infrared wavelength ultra-thin metalens based on Huygens metasurface[30]

    图  3  (a)基于集成等离激元共振相位和几何相位的反射式宽带消色差超构透镜[31];(b) GaN纳米柱集成共振相位的透射型宽带消色差超透镜及其消色差成像[32];(c) 基于TiO2超表面平台的的可见光透射型宽带消色差超透镜[33];(d)偏振不敏感宽带消色差超透镜阵列的白光3D成像展示[34];(e)工作在近红外波段的偏振不敏感消色差超透镜与无色差修正超透镜对比[35];(f) 可工作在可见至近红外波长(640~1200 nm)的超宽带消色差偏振不敏感超构透镜[36]

    Figure  3.  (a) Reflective broadband achromatic meta-lens based on integrated plasmon resonance phase and geometric phase [31]; (b) Transmissive broadband achromatic metalens via integrated resonance phase of GaN nanopillar and the achromatic imaging[32]; (c) Transmission broadband achromatic metalens in the visible band based on TiO2 metasurface platform [33]; (d) 3D imaging demonstration of white light based polarization-insensitive broadband achromatic metalens array [34]; (e) Comparison of polarization-insensitive achromatic metalens working in the near-infrared band and the metalens without correction of chromatic aberration[35]; (f) Ultra-broadband achromatic polarization-insensitive metalens that can work from visible to near infrared wavelength (640-1 200 nm)[36]

    图  4  (a)多功能硅基超构表面的偏振调控宽带消色差聚焦涡旋光束产生示意图;(b)不同偏振态下光斑中心横向位移随波长的变化曲线;(c)测量的偏振消光比;(d)光斑的半高宽和衍射极限表征

    Figure  4.  (a) Schematic diagram of polarization-controlled broadband achromatic focused vortex beam generation on a multifunctional silicon-based metasurface; (b) Curve of the lateral displacement of the spot center with wavelength in different polarization states; (c) Measured polarization extinction ratio; (d) Characterization of the FWHMs and diffraction limits of the spots

  • [1] Meinzer N, Barnes W L, Hooper IR. Plasmonic meta-atoms and metasurfaces [J]. Nature Photonics, 2014, 8: 889-898. doi:  10.1038/nphoton.2014.247
    [2] Smith D R, Pendry J B, Wiltshire M C. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
    [3] Plum E, Zhou J, Dong J. Metamaterial with negative index due to chirality [J]. Physical Review B, 2009, 79: 035407. doi:  10.1103/PhysRevB.79.035407
    [4] Yang Y, Wang W, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14: 1394-1399. doi:  10.1021/nl4044482
    [5] Yin X, Ye Z, Rho J, et al. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339: 1405-1407. doi:  10.1126/science.1231758
    [6] Ren H, Briere G, Fang X, et al. Metasurface orbital angular momentum holography [J]. Nature Communications, 2019, 10: 2986. doi:  10.1038/s41467-019-11030-1
    [7] Arbabi E, Kamali S, Arbabi A, et al. Vectorial holograms with a dielectric metasurface: Ultimate polarization pattern generation [J]. ACS Photonics, 2019, 6: 2712-2718. doi:  10.1021/acsphotonics.9b00678
    [8] Arbabi E, Kamali S, Arbabi A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces [J]. ACS Photonics, 2019, 5: 3132-3140.
    [9] Yang Z, Wang Z, Wang Y, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling [J]. Nature Communications, 2018, 9: 4607. doi:  10.1038/s41467-018-07056-6
    [10] Mueller J, Rubin N, Devlin R, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901
    [11] Yu N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
    [12] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica, 2017, 4: 139-52. doi:  10.1364/OPTICA.4.000139
    [13] Khorasaninejad M, Chen W, Devlin R, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
    [14] Liu W, Li Z, Cheng H, et al. Metasurface enabled wide-angle Fourier lens [J]. Advanced Materials, 2018, 30: 1706368. doi:  10.1002/adma.201706368
    [15] Guo Q, Shi Z, Huang Y, et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders [J]. Proceedings of the National Academy of Sciences, 2019, 116: 22959-22965. doi:  10.1073/pnas.1912154116
    [16] Safaei A, Vazquez-Guardado A, Franklin D, et al. High-effciency broadband mid-infrared flat lens [J]. Advanced Optical Materials, 2018, 6: 1800216. doi:  10.1002/adom.201800216
    [17] Chen W, Zhu A, Capasso F. Flat optics with dispersion-engineered metasurfaces [J]. Nature Review Materials, 2020, 5: 604-620. doi:  10.1038/s41578-020-0203-3
    [18] Ou K, Yu F, Li G, et al. Mid-infrared polarization-controlled broadband achromatic metadevice [J]. Science Advances, 2020, 6(37): eabc0711. doi:  10.1126/sciadv.abc0711
    [19] Deng Z, Li G. Metasurface optical holography [J]. Materials Today Physics, 2017, 16: 32.
    [20] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nature Nanotechnology, 2015, 10: 937-943. doi:  10.1038/nnano.2015.186
    [21] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters, 2012, 12: 6223-6229. doi:  10.1021/nl3032668
    [22] Decker M, Staude I, Falkner M, et al. High efficiency dielectric Huygens’ surfaces [J]. Advanced Optical Materials, 2015, 3: 813-820. doi:  10.1002/adom.201400584
    [23] Kamali S, Arbabi A, Arbabi E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces [J]. Nature Communications, 2016, 7: 11618. doi:  10.1038/ncomms11618
    [24] Deng Z L, Deng J, Zhuang X, et al. Facile metagrating holograms with broadband and extreme angle tolerance [J]. Light: Science & Applications, 2018, 7: 78.
    [25] Decker M, Chen W, Nobis T, et al. Imaging performance of polarization-insensitive metalenses [J]. ACS Photonics, 2019, 6: 1493-1499. doi:  10.1021/acsphotonics.9b00221
    [26] Paniagua-Domínguez R, Yu Y, Khaidarov E, et al. A metalens with near-unity numerical aperture [J]. Nano Letters, 2018, 18: 2124-2132. doi:  10.1021/acs.nanolett.8b00368
    [27] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
    [28] Arbabi A, Horie Y, Ball A, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays [J]. Nature Communications, 2015, 6: 7069. doi:  10.1038/ncomms8069
    [29] Zuo H J, Choi D, Gai X, et al. High-effciency all-dielectric metalenses for mid-infrared imaging [J]. Advanced Optical Materials, 2017, 5: 1700585. doi:  10.1002/adom.201700585
    [30] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics [J]. Nature Communications, 2019, 9: 1481.
    [31] Wang S, Wu P, Su V, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8: 187. doi:  10.1038/s41467-017-00166-7
    [32] Wang S, Wu P, Su V, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13: 227-232. doi:  10.1038/s41565-017-0052-4
    [33] Chen W, Zhu A, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible [J]. Nature Nanotechnology, 2018, 13: 220-226. doi:  10.1038/s41565-017-0034-6
    [34] Fan Z, Qiu H, Zhang H, et al. A broadband achromatic metalens array for integral imaging in the visible [J]. Light: Science & Applications, 2019, 8: 67.
    [35] Shrestha S, Overvig A, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7: 85.
    [36] Ndao A, Hsu L, Ha J, et al. Octave bandwidth photonic fishnet-achromatic-metalens [J]. Nature Communications, 2020, 11: 3205. doi:  10.1038/s41467-020-17015-9
  • [1] 张继承, 付跃刚, 胡源, 刘唯奇.  Buchdahl模型的无焦系统消色差方法 . 红外与激光工程, 2023, 52(1): 20220374-1-20220374-6. doi: 10.3788/IRLA20220374
    [2] 张鑫宇, 吴海俊, CarmeloRosales-Guzmán, 白振旭, 朱智涵, 胡小鹏, 祝世宁.  非线性光场调控实现12倍相位超分辨实时干涉测量 . 红外与激光工程, 2023, 52(8): 20230398-1-20230398-5. doi: 10.3788/IRLA20230398
    [3] 刘佳琪, 程用志, 陈浮, 罗辉, 李享成.  基于几何相位超表面的高效独立双频点圆偏振太赫兹波束调控 . 红外与激光工程, 2023, 52(2): 20220377-1-20220377-11. doi: 10.3788/IRLA20220377
    [4] 潘永刚, 张四宝, 刘政, 刘文成, 李绵, 张春娟, 罗长新.  偏振和位相调控分光膜的设计与制备 . 红外与激光工程, 2022, 51(5): 20210512-1-20210512-7. doi: 10.3788/IRLA20210512
    [5] 胡春光, 李恩赐, 翟聪, 高晓晴, 陈雨露, 郭梦迪.  大视场微球透镜超分辨显微成像技术的研究进展 . 红外与激光工程, 2022, 51(6): 20210438-1-20210438-14. doi: 10.3788/IRLA20210438
    [6] 和河向, 黎永耀, 黄锦圣.  基于相位共轭实现散射成像及光学幻像的双功能散射光调控方法(特邀) . 红外与激光工程, 2022, 51(8): 20220266-1-20220266-12. doi: 10.3788/IRLA20220266
    [7] 李洁, 田喜敏, 许军伟, 武婷, 陈霆枫, 旷金芝.  自旋依赖强度可调谐的相变超构透镜 . 红外与激光工程, 2022, 51(11): 20220398-1-20220398-8. doi: 10.3788/IRLA20220398
    [8] 刘淇, 刘文玮, 程化, 陈树琪.  基于电介质超表面的双频带双偏振通道波前调控 . 红外与激光工程, 2021, 50(5): 20211027-1-20211027-5. doi: 10.3788/IRLA20211027
    [9] 莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远.  超表面透镜的宽带消色差成像(特邀) . 红外与激光工程, 2021, 50(1): 20211005-1-20211005-10. doi: 10.3788/IRLA20211005
    [10] 张雅鑫, 蒲明博, 郭迎辉, 靳金金, 李雄, 马晓亮, 罗先刚.  基于二次相位超表面的大视场紧凑型全Stokes偏振测量方法 . 红外与激光工程, 2020, 49(9): 20201030-1-20201030-8. doi: 10.3788/IRLA20201030
    [11] 赵云, 杨原牧.  非线性超构表面:谐波产生与超快调控 . 红外与激光工程, 2020, 49(9): 20201037-1-20201037-14. doi: 10.3788/IRLA20201037
    [12] 肖行健, 祝世宁, 李涛.  宽带消色差平面透镜的设计与参量分析 . 红外与激光工程, 2020, 49(9): 20201032-1-20201032-8. doi: 10.3788/IRLA20201032
    [13] 程鸿, 熊帮玲, 王金成, 马慧敏, 张芬, 韦穗.  透镜模型下基于色散和强度传输方程的相位恢复技术 . 红外与激光工程, 2019, 48(6): 603018-0603018(6). doi: 10.3788/IRLA201948.0603018
    [14] 张瑞, 解琨阳, 景宁, 王志斌, 陈媛媛, 李克武, 乔亚.  基于超消色差1/4波片和AOTF的高光谱全偏振成像技术 . 红外与激光工程, 2019, 48(8): 814004-0814004(8). doi: 10.3788/IRLA201948.0814004
    [15] 刘正君, 郭澄, 谭久彬.  基于多距离相位恢复的无透镜计算成像技术 . 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
    [16] 贺文俊, 贾文涛, 李亚红, 王祺, 付跃刚.  基于S波片和双延迟器的矢量光场偏振调控方法 . 红外与激光工程, 2018, 47(12): 1207001-1207001(8). doi: 10.3788/IRLA201847.1207001
    [17] 黄玲玲.  基于手性光场作用的超颖表面的相位调控特性及其应用 . 红外与激光工程, 2016, 45(6): 634001-0634001(8). doi: 10.3788/IRLA201645.0634001
    [18] 刘博, 常俊德, 忻向军.  高非线性光纤中并行交叉相位调制的偏振膜色散监测方法 . 红外与激光工程, 2016, 45(9): 934001-0934001(5). doi: 10.3788/IRLA201645.0934001
    [19] 佟庆, 荣幸, 张新宇, 桑红石, 谢长生.  用于测量和调控入射光偏振态的大面积阵列液晶器件 . 红外与激光工程, 2014, 43(2): 474-478.
    [20] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵.  大孔径静态超光谱全偏振成像技术 . 红外与激光工程, 2014, 43(2): 574-578.
  • 加载中
图(4)
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  571
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-01
  • 修回日期:  2020-12-13
  • 网络出版日期:  2021-01-22
  • 刊出日期:  2021-01-22

宽带消色差红外光学超构透镜研究进展(特邀)

doi: 10.3788/IRLA20211003
    作者简介:

    欧凯(1988−),男,博士生,研究方向为人工微结构光场调控物理理论与实验研究,主要从事宽带消色差超构透镜,光子自旋-轨道角动量相互作用机理及其红外超构光子器件方面的应用研究。在包括Science子刊,Nanoscale, Opt Lett, Opt Express和Opt Commun等国际SCI收录刊物发表论文10余篇。第一作者在Science Advances,Nanoscale国际顶级期刊发表研究论文2篇,共同一作1篇,申请专利1项。获得博士研究生国家奖学金,中国科学院三好学生,中国科学院上海技术物理研究所一等学业奖学金等。

    李冠海(1987),男,副研究员,博士。入选上海市青年科技启明星计划、扬帆计划,入选中国科学院青年创新促进会,担任Journal of Physics D: Applied Physics期刊顾问委员会委员。主要从事新型人工微结构增强的红外探测器研究。在包括Nature Communications,Science Advances等刊物发表论文30多篇。主持和参与科技部纳米专项、国家自然科学基金面上项目等多项研究项目

    陈效双(1963−),男,研究员,博士。现任红外物理国家重点实验室主任,国家杰出青年基金获得者,新世纪百千万人才工程国家级人才,享受国务院政府特殊津贴。主要从事红外光电子材料与器件研究,在包括Science子刊, Nat子刊,Phys Rev Lett,JACS,Nano Lett,Adv Matt.等刊物发表论文100多篇。先后主持科技部量子调控与量子信息专项项目、基金委重大项目、上海市科委重大项目等多项研究项目,获国家自然科学二等奖、国家技术发明二等奖等。

基金项目:  国家重点研发计划(2018YFA0306200);国家自然科学基金(61875218);国家重点研发计划量子调控与量子信息专项(SQ2018YFA030069)
  • 中图分类号: O436.3

摘要: 超构透镜是由亚波长散射单元结构排列而成的具有聚焦功能的平面二维超构表面。超构表面能够在亚波长尺度上操控光场的振幅、相位、色散和偏振态,是近年来迅速发展起来的新型光场调控载体。亚波长共振纳米结构使得高阶衍射被抑制,入射光场可以完美地被调制到设计的衍射级次上,从而确保了超构表面器件具有高的光子调控效率。同时,超构单元在设计上的灵活性及其特定的电磁响应使得超构表面可以实现对光场多个维度的定制化操控。不同于传统光学透镜依赖光传播的相位累积效应,宽带消色差超构透镜通过对光场相位和相位色散的同时独立调控解决了传统通过级联多个透镜修正色差造成的光学系统复杂和体积庞大限制,为发展小型化片上集成光学提供了全新的思路。文中围绕超构透镜的相关研究,首先介绍了超构表面调控光场振幅、相位和偏振态的基本原理,在此基础上,重点回顾了近年来关于超透镜的研究发展,包括通过单一参量调控的单波长超透镜的实现,以及通过对光场偏振、相位及相位色散的多参量联合调控的多功能宽带消色差超构透镜的发展现状,最后讨论其进一步发展的可能挑战与应用前景。

English Abstract

    • 近年来,随着微纳加工技术和计算电磁学的发展,人工微纳结构电磁超材料逐渐受到研究人员的广泛关注[1-3]。类比于自然界中光学材料的性质主要取决于其组成原子、分子和空间构型,如果能够对光学材料的组分和结构单元进行亚波长尺度的设计与操控,那么其光学响应便能在亚波长尺度下被自由设计,进而实现对光场的任意调控,进一步加深对光与物质相互作用机理的认识。亚波长人工超构表面,即二维超材料,它是一种由亚波长尺寸的结构单元(超原子)按照设计的光学响应函数排布的亚波长厚度二维阵列结构,可以实现对光束相位、振幅、偏振、角动量、传播模式等特性的有效操控[4-10],相比于三维超材料,其厚度远小于波长,受欧姆损耗影响小且易于加工,在空间结构光场调控、平面光学器件等诸多领域具有重要的应用前景。2011年,哈佛大学Capasso教授团队提出了广义Snell定律[11],利用谐振单元(超原子)的特定电磁响应设计引入界面上的相位不连续性,通过超原子阵列实现光束的异常反射与折射。近几年来对硅、二氧化钛等低损耗高折射率介质超表面的研究为提高超表面器件的效率提供了新的思路[12]。基于全介质超构单元的超构表面可以克服等离子体超表面在效率上的限制。

      超构透镜是具有平面构型透镜功能的超构表面器件,进一步开发了超表面技术的潜力,为小型化、便携式成像镜头的制造和可穿戴设备开辟了全新的发展方向,将革新现有传统光学器件及光学系统。通过引入亚波长空间分辨的表面相位梯度避免传统折射光学器件的相位累积效应。同时,亚波长共振单元能实现对入射光相位、振幅和偏振态的有效操控,使得高阶衍射被抑制。基于介质超构表面,Capasso团队实现了可见光波长的具有高效聚焦和亚波长分辨成像的超构透镜,其性能可与最先进的商用物镜媲美[13]。随后各种关于超构透镜及其应用的功能性器件被相继报道[14-16]。由于超构单元对光子偏振态、相位、色散等属性的独特响应,因此通过对超构原子的设计可以实现具有多光子多维度操控能力的超构表面器件。借助于组合超构单元(超分子)独特的相位和色散能力,仅利用单层的平面超构表面,南京大学祝世宁院士团队和哈佛大学Capasso教授团队分别实现了可见及近红外波段的宽带消色差超构透镜[17]。最近,利用各向异性超构原子,通过对超原子色散和偏振响应的联合调控,笔者所在研究团队实现了具有偏振调控能力的多功能超构光子器件[18]

      文中首先介绍了目前超构透镜设计中几种典型的相位调控方式,包括作用于圆偏振入射光的几何相位、 共振型相位、波导传输型相位以及迂回相位。例如,在共振型超表面中,通过调节超原子,使其满足惠更斯条件:同时具有重叠的电共振与磁共振,则能实现高透射效率的波前整形。在几何相位型超表面中,设计超原子,使其等效于半波片,则能将超表面透镜的效率提高到80%以上。其次介绍了多种相位组合的超表面设计,例如基于传输相位与几何相位结合实现对光子多个维度,如相位和色散的联合调控,进而实现具有宽带色差修正能力的超构透镜。最后展望了具有多光场参量调控能力的宽带消色差超构透镜可能的发展。

    • 图1(a)左右两幅图,分别为反射型超原子和透射型超原子。当正入射的圆偏振光照射到绕中心对称轴旋转角度ϕ的超原子上时,反射光束或者透射光束中手性与入射光相反的圆偏振光获得的相位延迟为$ \pm 2\phi $。以透射型超表面为例,其透射特性可以用Jones矩阵来描述[19-20]:

      图  1  (a)反射型和透射型超表面的几何相位调控机理 [19-20];(b)共振相位型超构表面设计原理[21];(c)基于波导传输相位的高对比度介质超表面HCMs (high-contrast metasurfaces)设计[23];(d)利用超构原子在单元周期内的相对位移实现迂回相位的超构表面设计[24]

      Figure 1.  (a) Geometric phase control mechanism for reflective and transmissive metasurfaces [19-20]; (b) Design principle of resonant phase metasurface [21]; (c) Design of high-contrast metasurfaces (HCMs) based on waveguide transmission phase [21]; (d) Utilizing the relative displacement of the meta-atoms in the unit period to realize the detour phase effect and the design of the metasurface[24]

      $$ T=\left(\begin{array}{cc}{t}_{xx}& {t}_{xy}\\ {t}_{yx}& {t}_{yy}\end{array}\right)= R\left(-\phi \right)\left[\begin{array}{cc}{{A}_{x}{\rm{e}}}^{i{\varPhi }^{x}}& 0\\ 0& {A}_{y}{{\rm{e}}}^{i{\varPhi }^{y}}\end{array}\right]R\left(\phi \right) $$ (1)

      式中:xy分别为将超原子看作双折射晶体时的光学主轴(o轴或e轴);${{A}_{x}{\rm{e}}}^{i\varPhi ^{x}}$${A}_{y}{{\rm{e}}}^{i\varPhi ^{y}}$为响应的透射复振幅。当归一化入射的圆偏振光束:

      $$ {\widehat{{\rm{e}}}}_{\pm }\left(0\right)=\frac{1}{\sqrt{2}}\left({\widehat{{\rm{e}}}}_{x}\pm i{\widehat{{\rm{e}}}}_{y}\right) $$ (2)

      沿z轴照射到周期性超原子阵列时,透射型周期性几何相超原子阵列的表征可以表示为:

      $$ \begin{split}{E}_{\pm }^{t}=&T{\widehat{{\rm{e}}}}_{\pm }\left(0\right)=\frac{1}{2}\left({t}_{xx}+{t}_{yy}\right){\widehat{{\rm{e}}}}_{\pm }\left(0\right)+\\ &\frac{1}{2}\left({t}_{xx}-{t}_{yy}\right){{\rm{e}}}^{\pm i2\phi }{\widehat{{\rm{e}}}}_{\mp }\left(0\right) \end{split}$$ (3)

      上式表明,输出场包含两个正交的圆偏振分量。第一个透射分量具有与入射光相同的偏振态,也称为共极化分量(co-polarized component)。第二项具有与入射光场相反的手性,称为交叉极化分量(cross-polarized component)。一般情况下近似地有Ax=Ay=A0,令δ= ΦxΦy, Φ0=(Φx+Φy)/2,进一步可以得到:

      $$ {E}_{\pm }^{t}=\frac{{{A}_{0}{\rm{e}}}^{i\varPhi 0}}{2}{\rm{cos}}\frac{\delta }{2}{\widehat{{\rm{e}}}}_{\pm }\left(0\right)+i\frac{{{A}_{0}{\rm{e}}}^{i\varPhi 0}}{2}{\rm{sin}}\frac{\delta }{2}{{\rm{e}}}^{\pm i2\phi }{\widehat{{\rm{e}}}}_{\mp }\left(0\right) $$ (4)

      由公式(4)可以看出,通过调整超构单元的几何尺寸,调整透射振幅和超原子传输相位延迟及面内旋转角可以改变两个分量的占比。当δ=(2n+1)π(n为任意整数) 时,即超原子为一半波片时,透射场只存在交叉分量并且具有相位变化(即几何相位)。更进一步对传输相位和几何相位的联合调控可以实现左旋分量与右旋分量的振幅和相位的同时独立调控。

    • 图1(b)利用共振相位超表面实现了光束异常反射,通过改变H型天线结构的几何尺寸,实现了覆盖0~2π的超构原子设计[21]。另外共振相位的典型代表是惠更斯超表面 [22]。惠更斯超构原子是同时激发电偶极和磁偶极共振,能够同时实现对人工电磁表面面电流与磁流的调控。通过调整超原子几何构型,使其满足惠更斯条件:激发具有重叠的电共振与磁共振模式,从而实现更高的控制效率与更薄的单元厚度。如图1(c)所示,加州理工的Faraon教授研究团队提出了高对比度超表面,通过调整柱状纳米结构的横截面几何,实现了传输相位的连续变化调控[23]。其原理是纳米柱可以近似看为截断波导,通过调整共振波导模式的有效折射率来实现相位的连续可调。传输相位可以表达为Ψ=k0neffHk0是自由空间波数,H为纳米柱的高度,neff是波导模式的有效折射率。这类超表面结构通常是将折射率较大的介质材料(Si, TiO2, GaN, 等)生长在折射率较低的衬底(SiO2, Al2O3等)上,所以也称为高对比度介质超表面(high-contrast metasurfaces,HCMs)。最近,研究人员基于迂回相位,将超构原子排列成光栅结构(如图1(d)所示),通过对表面等离激元共振间隙模式的精心调控,使得−1衍射级次上具有接近100%的衍射效率。迂回相位可以表示为$ \varphi =\dfrac{2\pi p}{{p}_{0}} $p是超构原子的相对位移,p0是超构单元周期[24]。通过丰富的相位调控机制尽可能地开发超构单元的独立自由度参数,组合多种相位调控方式,对光场各维度进行同时独立调控,是超表面光场调控物理研究发展的必然趋势,这在宽带消色差透镜的研究中表现尤为明显。

    • 基于等光程原理,要使来自超表面不同位置的光线在设定的焦点位置汇聚,平面超构透镜上所需补偿的相位分布满足[25]

      $$ \varPhi \left(x,y\right)=-\frac{2\pi }{\lambda }\left(\sqrt{{x}^{2}+{y}^{2}+{F}^{2}}-F\right) $$ (5)

      式中:F为焦距;λ为入射光波长;(x, y)为超表面上的空间坐标。通过在第1节所讨论的相位调控机制去进行超构原子的设计及优化,最后按照公式 (5) 进行排布,即可实现超构透镜的设计。此过程即通过在超表面上引入相位突变,将传统光学中的球面透镜聚焦转化为了平面透镜聚焦。如图2所示,总结了近年来超构透镜在提高透镜数值孔径和聚焦效率上的研究进展。图2(a)通过构造非对称超分子,通过超构原子之间的共振效应尽可能将光束散射到特定的大的偏折角度(约82°)上,实现了数值孔径(NA)接近1的薄的(λ/3)透射式超构透镜[26]。在参考文献[13]中,通过优化介质纳米柱结构的三个自由度参数:长度、宽度以及面内旋转角,基于几何相位超表面的设计,具有高数值孔径 (NA=0.82)和高聚焦效率(81%)的可见波长(λ=532 nm)超构透镜被研究报道,其性能可与最先进的商用物镜比拟。图2(b)为利用几何相位和光栅结构超构原子设计而成的具有70%聚焦效率的透射式介质超构透镜[27]。由于几何相位是与波长无关的,因此该几何相位超构透镜具有一定的宽带聚焦功能,但由于材料本征色散和单一波长的设计,焦距将随波长发生变化,存在一定的色差。同时,几何相位超构透镜工作在特定的圆偏振态。图2(c)展示了工作于近红外波长λ=1550 nm的偏振不敏感超构透镜,该超构透镜基于HCMs的波导传输相位实现聚焦相位分布[28]。HCMs超单元之间的相互耦合非常微弱,周期性超原子阵列的透射性能可以用单个超原子单元的透射矩阵来表征。在优化的单元周期下,光与周期性超原子阵列相互作用的近场能量几乎完全局域在单个纳米柱内。通过选择最优化的晶格常数,在一定的直径范围内,可以实现近100%的透射效率和连续的的全相位0~2π调控(如图1(c)所示)。并且该工作研究了不同数值孔径于聚焦效率的关系,高NA总是对应较低的聚焦效率。图2(d)和图2(e)报道了最近中波红外超构透镜的研究工作,图2(d)是基于偏振不敏感HCMs实现的具有高效聚焦和大NA的超构透镜[29],并且制作的超构透镜成像性能与相同指标的商用物镜相媲美。基于惠更斯超表面,图2(e)报道了一种超薄的(λ/8)中红外波长(λ=5200 nm)超构透镜,并且也实现了比拟商用物镜的成像效果[30]

      图  2  (a)基于非对称超构原子的超高数值孔径(NA>0.99)超构透镜[26];(b)基于几何相位的透射型超构透镜 [27];(c)基于HCMs超表面平台的近红外波长偏振不敏感超构透镜[28];(d) 基于Si/MgF2超表面平台的中波红外偏振不敏感超构透镜[29];(e)基于惠更斯超构表面的线偏振中红外波长超薄超构透镜[30]

      Figure 2.  (a) Ultra-high numerical aperture (NA>0.99) meta-lens based on asymmetric metaatoms[26]; (b) Transmissive metalens based on geometric phase[27]; (c) Near-infrared wavelength polarization-insensitive metalens based on HCMs meta-surface platform[28]; (d) Mid-wavelength infrared polarization-insensitive metalens based on the Si/MgF2 metasurface platform[28]; (e) Linearly polarized mid-infrared wavelength ultra-thin metalens based on Huygens metasurface[30]

    • 尽管超构透镜在设计的最优波长下具有精确的相位调控能力,超构透镜的性能已经可以达到与商用器件媲美的程度,但是缺乏对相位色散的修正及其他维度的调控能力。在实际的应用过程中仍然会遭受系统色差的限制,导致其成像性能的下降。因此修正超构表面器件的色差是一项十分具有挑战性和令人感兴趣的研究课题,因为具有宽带消色差能力的超表面器件由于具有超薄的平面构型和CMOS兼容的加工制造工艺将革新传统的光学系统,带来光学研究的重大进步。振奋人心的是,目前国际上各个研究团队已经报道并实现了宽带消色差超构透镜,并初步建立了具有一般性的消色差超构光学理论。以上基于单一型相位调控机制的超表面一般仅能对所调控光场的某一个维度(相位、相位色散、偏振态)进行单独调控。为了实现宽波段无消色差超构透镜,需要对空间光场的相位、色散等各个维度实施全方位自由调控。

      图3(a)展示了利用表面等离激元集成共振相位与几何相位结合的调控方法实现了工作于近红外波段的反射式宽带消色差超构透镜。该工作提出了一般性的宽带消色差超构器件设计理论,通过几何相位在中心波长处引入实现聚焦功能的相位分布,同时借助超构原子的共振相位对相位色散所导致的群延迟相位进行调制,从而实现相位与相位色散的同时独立调控[31]图3(b)基于这种相位和群延迟调控机制,在集成共振波导相位的基础上,利用GaN纳米柱超构原子及其互补结构,增大了群延迟相位的覆盖范围[32],开发出了工作于整个可见光波段的透射型宽带消色差超构透镜,并进行了白光成像实验展示。总的来说,这种宽带消色差机制一方面通过几何相位实现超构透镜聚焦所需满足的相位分布;另一方面通过超构原子的共振相位对光场传播所累积的色差进行修正。可以通过金属超分子的集成共振机理、高深宽比GaN纳米柱及其互补构型组合的超原子结构或者如图3(c)所示的双TiO2纳米柱超分子构型来实现相位与群延迟相位的同时独立调控[33]

      图  3  (a)基于集成等离激元共振相位和几何相位的反射式宽带消色差超构透镜[31];(b) GaN纳米柱集成共振相位的透射型宽带消色差超透镜及其消色差成像[32];(c) 基于TiO2超表面平台的的可见光透射型宽带消色差超透镜[33];(d)偏振不敏感宽带消色差超透镜阵列的白光3D成像展示[34];(e)工作在近红外波段的偏振不敏感消色差超透镜与无色差修正超透镜对比[35];(f) 可工作在可见至近红外波长(640~1200 nm)的超宽带消色差偏振不敏感超构透镜[36]

      Figure 3.  (a) Reflective broadband achromatic meta-lens based on integrated plasmon resonance phase and geometric phase [31]; (b) Transmissive broadband achromatic metalens via integrated resonance phase of GaN nanopillar and the achromatic imaging[32]; (c) Transmission broadband achromatic metalens in the visible band based on TiO2 metasurface platform [33]; (d) 3D imaging demonstration of white light based polarization-insensitive broadband achromatic metalens array [34]; (e) Comparison of polarization-insensitive achromatic metalens working in the near-infrared band and the metalens without correction of chromatic aberration[35]; (f) Ultra-broadband achromatic polarization-insensitive metalens that can work from visible to near infrared wavelength (640-1 200 nm)[36]

      基于几何相位和共振相位组合的消色差超构透镜展现出了较好的白光成像效果,为超表面透镜的实用化进程奠定了坚实的基础。但同时也存在对入射光场偏振的依赖,另外该类复合型相位对波前信息的调控仍然是依赖超构单元面内转角自由度所产生的几何相位,因此这类消色差超构透镜的聚焦效率受到了超构原子的群延迟相位和偏振转化效率之间的制约关系限制,聚焦效率不高(20%~40%)。图3(d)~3(f)通过利用对称的超构原子,克服了以上消色差超构透镜的偏振依赖性和聚焦效率不高的难题。图3(d)利用消色差超构透镜阵列实现了可见光波段的三维白光成像[34]。利用共振波导效应,图3(e)通过设计大深宽比和多样化的超构原子实现了较大的相位色散覆盖范围和近红外波段(1 250~1 650 nm)的透射型消色差超构透镜[35]图3(f) 基于以上相位和相位色散调控原理,通过数值优化算法实现了可见-近红外波长(600~1 200 nm)的偏振不敏感超宽带消色差聚焦,并且聚焦效率突破到70%[36]

    • 以上关于消色差超构透镜的报道仅局限于可见和近红外波段,同时未有对偏振调控的多功能消色差超构透镜的相关研究。相比可见和近红外,中波红外超构光学由于昂贵的实验表征设备和匮乏的光学元件而很少被研究报道。然而作为大气窗口之一和分子振动吸收谱带,中波红外光学具有很多重要的应用价值,如分子指纹检测等。传统的光学是通过分立式的偏振片、棱镜和透镜级联的方法来进行系统色差修正和偏振分光调制的。笔者研究团队近期利用全硅双折射超表面体系在中波红外范围实现了偏振-色散调制多功能超构光学器件[18]。如图4(a)所示,在连续的设计带宽内,不同偏振态的光子经过超表面器件调制后将携带不同的轨道角动量信息,并被收集到设定的焦平面上。另外,通过在超表面器件的调制偏振-相位色散谱中引入离轴相位因子,对宽带光束实现了无色散的定向聚束调控。由于偏振态的联合操控,不同偏振态的光子也以高的偏振隔离度被收集汇聚到焦平面的不同设计区域(见图4(b))。该器件在中波红外3.5~5 μm的连续带宽内可选择性地将不同偏振态的光子以特定的波前形式聚焦到同一焦平面的不同位置。实现结果表明,聚焦光斑具有接近衍射极限的尺寸和高偏振选择比(图4(c)~4(d))。该研究成果有望在机器视觉以及分子检测等领域得到应用。

      图  4  (a)多功能硅基超构表面的偏振调控宽带消色差聚焦涡旋光束产生示意图;(b)不同偏振态下光斑中心横向位移随波长的变化曲线;(c)测量的偏振消光比;(d)光斑的半高宽和衍射极限表征

      Figure 4.  (a) Schematic diagram of polarization-controlled broadband achromatic focused vortex beam generation on a multifunctional silicon-based metasurface; (b) Curve of the lateral displacement of the spot center with wavelength in different polarization states; (c) Measured polarization extinction ratio; (d) Characterization of the FWHMs and diffraction limits of the spots

    • 文中简要综述了近年来科研工作者在光学超构透镜上取得的一些突破性研究进展。详细介绍了超构表面光场调控物理在对光场相位、群延迟相位及偏振等基本维度的调控机理。国际上各研究团队基于不同的超构表面平台,通过多种相位调控方式组合的物理机制实现了可以应用于不同波段的宽带消色差超构透镜及偏振多功能消色差超构光子器件。多功能超构表面器件已然成为光学、物理学及其交叉学科研究的前沿热点。宽带消色差超构透镜突破了传统块体透镜的限制,能够在亚波长尺度上实现对光场相位、群延迟相位、偏振维度的有效调控,同时具备传统光学器件所无法比拟的平面化、轻薄、CMOS平台兼容的加工方法等优点,为降低光学系统的复杂度和实现系统集成化提供了新颖和有效的技术路线。宽带消色差超构透镜研究的突破将替代传统光学曲面透镜,显著降低光学系统的负荷,促进系统集成化的发展,并有望在无标记生物显微成像、虚拟\增强现实、微机电系统等多个领域发挥出巨大的应用价值。随着超构表面光场调控物理研究的不断深入,研究方向已逐渐从基础研究转向实际应用。拓展超构表面光学的可调自由度、实现器件的多功能集成、提高器件工作效率与带宽是未来超构表面光场调控物理的主要研究方向。如将液晶、二维材料、相变材料等与超构表面结合,实现电控、温控等的动态调控的宽带消色差变焦超构透镜。另外,超构透镜研究仍然存在诸多进一步亟待解决的科学技术问题。如可以实现超大尺寸和数值孔径的一般性宽带相位调控和色差修正理论和方法,更加精密的大规模大尺度样品制造加工技术等。笔者坚信,通过光学和相关领域科学家的不懈努力,宽带消色差超构透镜及其衍生的多功能超构器件必将在多个相关领域得到广泛的应用。

参考文献 (36)

目录

    /

    返回文章
    返回