留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波长可切换窄线宽单频掺镱光纤激光器(特邀)

孟祥瑞 文瀚 陈浩伟 孙博 陆宝乐 白晋涛

孟祥瑞, 文瀚, 陈浩伟, 孙博, 陆宝乐, 白晋涛. 波长可切换窄线宽单频掺镱光纤激光器(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220325. doi: 10.3788/IRLA20220325
引用本文: 孟祥瑞, 文瀚, 陈浩伟, 孙博, 陆宝乐, 白晋涛. 波长可切换窄线宽单频掺镱光纤激光器(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220325. doi: 10.3788/IRLA20220325
Meng Xiangrui, Wen Han, Chen Haowei, Sun Bo, Lu Baole, Bai Jintao. Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220325. doi: 10.3788/IRLA20220325
Citation: Meng Xiangrui, Wen Han, Chen Haowei, Sun Bo, Lu Baole, Bai Jintao. Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220325. doi: 10.3788/IRLA20220325

波长可切换窄线宽单频掺镱光纤激光器(特邀)

doi: 10.3788/IRLA20220325
基金项目: 陕西省教育厅重点实验室科研计划(18JS113)
详细信息
    作者简介:

    孟祥瑞,男,硕士生,主要从事单频光纤激光器及无纵模激光器方面的研究

  • 中图分类号: TN248.1

Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)

Funds: Key Laboratory Research Program of Shaanxi Provincial Education Department(18JS113)
  • 摘要: 基于光纤环形激光器,设计出由三端口环形器、偏振控制器、未泵浦保偏掺镱光纤和光纤布拉格光栅组成的滤波器件作为高精度滤波器对谐振腔内的模式个数进行抑制,通过调谐偏振控制器,在保偏掺镱光纤内形成的梳状光谱和动态光栅,实现了窄线宽、单、双波长可切换单频掺镱光纤激光器。单波长运行时,在1064.37 nm处测得激光器输出线宽346 Hz,光信噪比大于50 dB,30 min内该激光器波长及功率的不稳定性均在0.01 nm和0.2 dB范围内。通过调节偏振控制器,单波长和双波长可以实现互相切换,双波长分别位于1064.156 nm和1065.236 nm。该技术为超窄线宽激光器的双波长输出提供了新的途径。
  • 图  1  单频掺镱光纤激光器结构示意图

    Figure  1.  Schematic diagram of single-frequency ytterbium doped fiber laser

    图  2  动态光栅的反射带宽随PM-YDF长度和折射率差的变化

    Figure  2.  Variation of reflection bandwidth of dynamic grating with PM-YDF length and refractive index difference

    图  3  梳状光谱滤波数值模拟图

    Figure  3.  Numerical simulation of comb spectral filtering

    图  4  梳状光谱检测装置图

    Figure  4.  Diagram of the comb spectroscopy detection device

    图  5  FBG反射带宽与梳状光谱的实测图

    Figure  5.  Measured graph of FBG reflectance bandwidth versus comb spectrum

    图  6  F-P干涉仪测量的纵向模式振荡

    Figure  6.  Longitudinal mode oscillation measured by F-P interferometer

    图  7  泵浦功率与激光器输出功率曲线图

    Figure  7.  Pump power and laser output power curve

    图  8  单频激光器光谱图及稳定性

    Figure  8.  Spectrum diagram and stability of single-frequency laser

    图  9  延迟自外差法测量的线宽

    Figure  9.  Linewidth measured by the delayed autoheterodyne method

    图  10  双波长单频光纤激光器的测量

    Figure  10.  The measurement of dual-wavelength single-frequency fiber laser

    图  11  双波长单频光纤激光器的波长波动及功率稳定性

    Figure  11.  Wavelength fluctuation and power stability of dual-wavelength single-frequency fiber laser

  • [1] Buikema A, Jose F, Augst S J, et al. Narrow-linewidth fiber amplifier for gravitational-wave detectors [J]. Optics Letters, 2019, 44(15): 3833-3836. doi:  10.1364/OL.44.003833
    [2] Rapol U D, Krishna A, Wasan A, et al. Laser cooling and trapping of Yb from a thermal source [J]. European Physical Journal D, 2004, 29(3): 409-414. doi:  10.1140/epjd/e2004-00041-3
    [3] Li S H, Wang Q, Song R, et al. Laser diode pumped high-energy single-frequency Er: YAG laser with hundreds of nanoseconds pulse duration [J]. Chinese Optics Letters, 2020, 18(3): 40-44.
    [4] Williams J G, Turyshev S G, Boggs D H. Progress in lunar laser ranging tests of relativistic gravity [J]. Physical Review Letters, 2004, 93(26): 261101. doi:  10.1103/PhysRevLett.93.261101
    [5] Shi Wei, Fu Shijie, Fang Qiang, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber [J]. Infrared and Laser Engineering, 2016, 45(10): 1003001. (in Chinese) doi:  10.3788/IRLA201645.1003001
    [6] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43(6): 1383-1386. doi:  10.1364/OL.43.001383
    [7] Loh W H, Samson B N, Dong L, et al. High performance single frequency fiber grating-based erbium/ytterbium-codoped fiber lasers [J]. Journal of Lightwave Technology, 1998, 16(1): 114-118. doi:  10.1109/50.654992
    [8] Mo S, Huang X, Xu S, et al. 600-Hz linewidth short-linear-cavity fiber laser [J]. Optics Letters, 2014, 39(20): 5818-5821. doi:  10.1364/OL.39.005818
    [9] Yuan L M, Lu B L, Kang J, et al. Narrow-linewidth single-frequency yitterbium-doped fiber laser at 1 083 nm [J]. Acta Photonica Sinica, 2016, 45(8): 0814003. (in Chinese) doi:  10.3788/gzxb20164508.0814003
    [10] Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier [J]. Optics Express, 2016, 24(26): 29705-29713. doi:  10.1364/OE.24.029705
    [11] Paschotta R, Nilsson J, Reekie L, et al. Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning [J]. Optics Letters, 1997, 22(1): 40-42. doi:  10.1364/OL.22.000040
    [12] Yin F, Yang S, Chen H, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity [J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi:  10.1109/LPT.2011.2166112
    [13] Li Y, He Y, Cai Y, et al. Black phosphorus: broadband nonlinear optical absorption and application [J]. Laser Physics Letters, 2018, 15(2): 025301. doi:  10.1088/1612-202X/aa94e3
    [14] Zhang J, Sheng Q, Zhang L, et al. 2.56 W single-frequency all-fiber oscillator at 1720 nm [J]. Advanced Photonic Research, 2022, 3(2): 02100256. doi:  10.1002/adpr.202100256
    [15] Ahmad H, Muhammad F D, Chang H P, et al. Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 166-173. doi:  10.1109/JSTQE.2014.2302351
    [16] Kim R K, Chu S, Han Y G. Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation [J]. IEEE Photonics Technology Letters, 2012, 24(6): 521-523. doi:  10.1109/LPT.2012.2182763
    [17] Yin B, Feng S, Liu Z, et al. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter [J]. Optics Express, 2014, 22(19): 22528-22533. doi:  10.1364/OE.22.022528
    [18] Zhu T, Zhang B, Shi L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering [J]. Optics Express, 2016, 24(2): 1324-1330. doi:  10.1364/OE.24.001324
    [19] Feng T, Wang M, Wang X, et al. Switchable 0.612 nm-spaced dual-wavelength fiber laser with sub-khz linewidth, ultra-high osnr, ultra-low rin and orthogonal polarization outputs [J]. Journal of Lightwave Technology, 2019, 37(13): 3173-3182. doi:  10.1109/JLT.2019.2912432
    [20] Lemieux J F, Bellemare A. Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating [J]. Electronics Letters, 1999, 35(11): 904-906. doi:  10.1049/el:19990583
    [21] Kang Z, Jin U K. C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser [J]. Optics Express, 2008, 16(18): 14173-14179. doi:  10.1364/OE.16.014173
  • [1] 王路达, 吴伟冲, 朱占达, 白振旭, 惠勇凌, 雷訇, 李强.  基于光谱合束的双波长输出Nd:YAG固体激光器 . 红外与激光工程, 2024, 53(1): 20230411-1-20230411-6. doi: 10.3788/IRLA20230411
    [2] 韩志刚, 郑云瀚, 王昊业, 李方欣, 陈佳乐, 朱日宏.  6.7 kW全国产化窄线宽三包层光纤激光器 . 红外与激光工程, 2022, 51(2): 20210849-1-20210849-9. doi: 10.3788/IRLA20210849
    [3] 张万儒, 粟荣涛, 李灿, 张嵩, 姜曼, 马鹏飞, 马阎星, 吴坚, 周朴.  窄线宽光纤激光振荡器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20210879-1-20210879-26. doi: 10.3788/IRLA20210879
    [4] 李炳阳, 于永吉, 王子健, 王宇恒, 姚晓岱, 赵锐, 金光勇.  窄线宽1064 nm掺镱光纤激光器泵浦MgO:PPLN中红外光学参量振荡器研究 . 红外与激光工程, 2022, 51(9): 20210898-1-20210898-6. doi: 10.3788/IRLA20210898
    [5] 白振旭, 陈晖, 张展鹏, 王坤, 丁洁, 齐瑶瑶, 颜秉政, 李森森, 闫秀生, 王雨雷, 吕志伟.  百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀) . 红外与激光工程, 2021, 50(12): 20210685-1-20210685-7. doi: 10.3788/IRLA20210685
    [6] 王丽莎, 孙松松, 闫炜, 瞿娇娇, 王勇.  L波段可切换双波长高能量脉冲光纤激光器 . 红外与激光工程, 2021, 50(7): 20200370-1-20200370-5. doi: 10.3788/IRLA20200370
    [7] 朱可, 裴丽, 赵琦, 解宇恒, 常彦彪.  采用双Sagnac环滤波器的可切换多波长光纤激光器 . 红外与激光工程, 2020, 49(11): 20200047-1-20200047-7. doi: 10.3788/IRLA20200047
    [8] 张昆, 周寿桓, 李尧, 张利明, 余洋, 张浩彬, 朱辰, 张大勇, 赵鸿.  142 W高峰值功率窄线宽线偏振脉冲光纤激光器 . 红外与激光工程, 2020, 49(4): 0405003-0405003-6. doi: 10.3788/IRLA202049.0405003
    [9] 颜凡江, 杨策, 陈檬, 桑思晗, 李梦龙, 蒙裴贝.  高重频高峰值功率窄线宽激光放大器 . 红外与激光工程, 2019, 48(2): 206002-0206002(5). doi: 10.3788/IRLA201948.0206002
    [10] 明淑娴, 魏志伟, 刘萌, 罗爱平, 徐文成, 罗智超.  调Q和调Q锁模脉冲共存双波长光纤激光器 . 红外与激光工程, 2019, 48(8): 805009-0805009(8). doi: 10.3788/IRLA201948.0805009
    [11] 靳全伟, 庞毓, 蒋建锋, 谭亮, 崔玲玲, 魏彬, 万敏, 高清松, 唐淳.  VRM腔高光束质量高功率双波长激光器 . 红外与激光工程, 2018, 47(11): 1105003-1105003(5). doi: 10.3788/IRLA201847.1105003
    [12] 马毅, 颜宏, 孙殷宏, 彭万敬, 李建民, 王树峰, 李腾龙, 王岩山, 唐淳, 张凯.  基于双光栅的光纤激光光谱合成关键技术研究进展(特邀) . 红外与激光工程, 2018, 47(1): 103002-0103002(14). doi: 10.3788/IRLA201847.0103002
    [13] 白慧君, 汪岳峰, 王军阵, 郭天华.  双波长可调外腔半导体激光器 . 红外与激光工程, 2017, 46(9): 906002-0906002(5). doi: 10.3788/IRLA201746.0906002
    [14] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [15] 纪亚飞, 赵柏秦, 罗达新.  双波长激光驱动接收专用集成电路设计 . 红外与激光工程, 2016, 45(7): 705004-0705004(8). doi: 10.3788/IRLA201645.0705004
    [16] 王枫, 毕卫红, 付兴虎, 付广伟, 江鹏, 武洋, 王莹.  基于重叠光栅的双波长掺铒光子晶体光纤激光器 . 红外与激光工程, 2016, 45(8): 822001-0822001(5). doi: 10.3788/IRLA201645.0822001
    [17] 林桢, 任国斌, 郑斯文, 朱博枫, 彭万敬, 简水生.  基于光纤拉锥及相位调制的可切换多波长掺铒光纤激光器 . 红外与激光工程, 2014, 43(10): 3262-3268.
    [18] 潘洪刚, 童峥嵘, 张爱玲, 宋殿友, 薛玉明.  基于级联多模布拉格光栅和高精细度滤波器的可调谐双波长窄线宽掺铒光纤激光器 . 红外与激光工程, 2014, 43(12): 3912-3917.
    [19] 王云祥, 邱琪, 梁旭, 邓珠峰.  窄线宽低噪声可调谐非平面环形激光器 . 红外与激光工程, 2013, 42(3): 595-598.
    [20] 方秀丽, 童峥嵘, 曹晔, 杨秀峰.  采用F-P光纤环滤波器的窄线宽环形腔光纤激光器 . 红外与激光工程, 2013, 42(2): 329-333.
  • 加载中
图(11)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  33
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-05-20
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2022-07-05

波长可切换窄线宽单频掺镱光纤激光器(特邀)

doi: 10.3788/IRLA20220325
    作者简介:

    孟祥瑞,男,硕士生,主要从事单频光纤激光器及无纵模激光器方面的研究

基金项目:  陕西省教育厅重点实验室科研计划(18JS113)
  • 中图分类号: TN248.1

摘要: 基于光纤环形激光器,设计出由三端口环形器、偏振控制器、未泵浦保偏掺镱光纤和光纤布拉格光栅组成的滤波器件作为高精度滤波器对谐振腔内的模式个数进行抑制,通过调谐偏振控制器,在保偏掺镱光纤内形成的梳状光谱和动态光栅,实现了窄线宽、单、双波长可切换单频掺镱光纤激光器。单波长运行时,在1064.37 nm处测得激光器输出线宽346 Hz,光信噪比大于50 dB,30 min内该激光器波长及功率的不稳定性均在0.01 nm和0.2 dB范围内。通过调节偏振控制器,单波长和双波长可以实现互相切换,双波长分别位于1064.156 nm和1065.236 nm。该技术为超窄线宽激光器的双波长输出提供了新的途径。

English Abstract

    • 单频光纤激光器是谐振腔内只有单一纵模进行振荡的光纤激光器,其激光输出具有线宽窄、噪声低、信噪比高,且散热性好、结构紧凑、易于集成等特点,使其在激光冷却、引力波探测、光通信、光纤传感和光谱学等领域均具有重要的应用前景[1-4]。目前,常见的单频光纤激光器按腔型结构主要分为短直腔、环形腔和复合腔[5-9]。相较于短直腔型结构的分布反馈式单频光纤激光器和分布布拉格反射式单频光纤激光器[10-13],环形腔型和复合腔型单频光纤激光器由于具有较长的腔长,可更为灵活、方便地在谐振腔中引入各种结构的窄带滤波器件以实现单纵模振荡,且单频激光输出线宽更窄[14-16]。双波长单频光纤激光器在差频产生太赫兹波、光学计量、激光雷达等领域则应用更为广泛。2014年,Yin Bin等[17]人通过在保偏光纤上刻写啁啾光栅作为滤波器件,实现了单、双波长可切换的单频激光输出,输出线宽分别为325 Hz和355 Hz。2016年,朱涛等人[18]利用两个级联光纤布拉格光栅当作滤波器,实现了波长间距为20 nm的双波长单频激光输出,两个波长的输出线宽均为700 Hz,线宽波动范围在30 Hz内,光学信噪比为60 dB。2019年,Feng T等[19]人采用复合腔结构,利用高反光纤布拉格光栅和三环偏振控制器相互作用产生强烧孔效应,获得了间距为0.612 nm、线宽分别为687 Hz和678 Hz的单、双波长可切换单频激光输出。

      文中采用在环形腔内引入高精度滤波器的结构实现了单、双波长可切换单频掺镱光纤激光器,实验中使用由三端口环形器(Circulator, CIR)、偏振控制器(Polarization Controller, PC)、未泵浦保偏掺镱光纤(Polarization Maintaining Ytterbium Doped Fiber, PM-YDF)和光纤布拉格光栅(Fiber Bragg Grating, FBG)组成的滤波器件作为高精度滤波器。利用该高精度滤波器中形成的驻波干涉效应和梳状谱,实现了单、双波长可切换单频光纤激光器。相比于利用未泵浦单模有源光纤或者Lyot滤波器[20-21],文中所使用的滤波器可以得到更窄线宽的激光输出。通过在光谱仪上长时间的观测发现,无论是单波长还是双波长,都具有良好的输出稳定性,且光学信噪比均大于50 dB。采用延时自外差系统测得单波长单频光纤激光器的线宽为346 Hz。

    • 图1为单、双波长可切换单频光纤激光器的实验装置示意图。采用480 mW的980 nm单模尾纤输出半导体激光器作为泵浦源,泵浦光由980/1060 nm波分复用器(Wavelength Division Multiplexer, WDM)耦合进入谐振腔内泵浦长度为1.5 m的高掺杂镱离子增益光纤(Ytterbium-doped Fiber, YDF, LIEKKI Yb1200-4/125);增益光纤与中心波长为1064 nm的环形器(Circulator, CIR)1端口连接,环形器2端口与长度为0.9 m保偏掺镱光纤(Polarization Maintaining Ytterbium Doped Fiber, PM-YDF, Coractive PM-Yb 401-4/125)相连接,在其另一端连接一带宽约为2 nm的高反光纤布拉格光栅(Fiber Bragg Grating, FBG,反射率大于99%)。偏振控制器(Polarization Controller, PC)、0.9 m保偏掺镱光纤和带宽为2 nm、反射率大于99%的FBG组成高精度滤波器,高精度滤波器对谐振腔内模式个数进行抑制,实现对谐振腔内单纵模的选取。环形器3端口与1×2的耦合器(Optical Coupler, OC,分光比为10∶90)一端相连接,耦合器另一端的90%端口与WDM的一端连接形成单频光纤激光器环形腔结构,所产生的单频激光由耦合器的10%端口输出,整个谐振腔长约为9.5 m,对应纵模频率间隔约为21.7 MHz。

      图  1  单频掺镱光纤激光器结构示意图

      Figure 1.  Schematic diagram of single-frequency ytterbium doped fiber laser

      环形器的2端到1端、3端到2端有大于45 dB的隔离度作用,确保光在谐振腔内的传输过程保持单向传输。同时,也能进一步阻止经过1.5 m高掺杂镱离子增益光纤的980 nm残余泵浦光进入PM-YDF,使得PM-YDF不被泵浦。FBG反射回来的光再次进入PM-YDF与入射光形成驻波干涉效应;驻波处波腹与波节的光强呈周期性分布从而引起折射率周期性变化,最后在未泵浦的PM-YDF中形成了动态光栅。该动态光栅具有极窄的反射带宽,同时具有中心波长自适应的特性,可以有效地抑制跳模现象。

      整个滤波器中PM-YDF形成动态光栅的反射率的半高全宽(Full Width at Half Maxima, FWHM)的表达式为[21]

      $$ \Delta \lambda =\frac{C}{\lambda }\kappa \sqrt{{\left(\frac{\Delta n}{2n}\right)}^{2}+{\left(\frac{\lambda }{2n{L}_{g}}\right)}^{2}} $$ (1)

      式中:$ n、\lambda 、\Delta n、{L}_{g} $分别为光纤折射率、入射光波长、折射率差和PM-YDF的长度;其中$ \kappa = 2\Delta n/(\lambda n) $为动态光栅的耦合系数。图2为反射带宽与$ {L_g} $$ \Delta n $的变化趋势,$ \Delta n $与输入进PM-YDF的光功率或泵浦光强度有关。 反射带宽随PM-YDF的加长和$ \Delta n $的减小而变小。图中曲线上标记的是实验中选取的PM-YDF的长度$ {L_g} $和折射率$ \Delta n $变化。在该实验中,结合理论与实验测试结果,最终选取PM-YDF的长度为0.9 m、对应的折射率差$ \Delta n $为1.39×10−7

      图  2  动态光栅的反射带宽随PM-YDF长度和折射率差的变化

      Figure 2.  Variation of reflection bandwidth of dynamic grating with PM-YDF length and refractive index difference

      另外,PM-YDF的双折射效应与FBG共同作用下可以产生梳状谱(周期性透射光谱),如图3(a)所示。通过旋转PC改变光路中的总相移量,不仅梳状光谱的透射系数会随之变化,而且梳状谱的透射曲线整体也会发生相应的波长平移。实验中,当梳状谱透射曲线的透射峰处于FBG反射带宽内时,则在该透射峰对应的波长处会产生单一波长激光振荡输出。通过调谐PC使得梳状谱曲线的透射峰在FBG反射带宽内发生移动,则可在FBG反射带宽范围内实现单波长调谐输出。当梳状谱曲线透过率最小位置(即透过率曲线波谷位置)处于FBG反射带宽中心位置附近时,该光纤激光器则有可能在如图3(b)中AB两点处实现双波长激光振荡输出。

      图  3  梳状光谱滤波数值模拟图

      Figure 3.  Numerical simulation of comb spectral filtering

      为了对理论分析结果进行验证,搭建如图4所示的检测装置对梳状光谱的特性进行验证,此检测光路采用980 nm半导体激光器作为泵浦源,经过980/1060 nm WDM与增益光纤连接,经过掺镱光纤中镱粒子增益放大后产生自发辐射光,经过CIR1端进入2端后的PM-YDF光进入光纤全反镜,返回2端后从CIR3端射出,输出端连接光谱仪进行测量。

      图  4  梳状光谱检测装置图

      Figure 4.  Diagram of the comb spectroscopy detection device

      在泵浦功率为250 mW时,对检测装置输出端的光信号进行采集,图5为采集的光谱信号。光谱周期为3.8 nm,与理论分析结果近乎吻合。在对PC进行旋转时,由于PC会对光纤进行一定的挤压,导致挤压点与其余段的单模光纤的应力分布不同,从而改变接触点的折射率分布。因此,在对PC旋转挤压操作时,使整个输出光谱如图5产生一定量的相移。图5中黑色的几字型曲线为FBG实测的反射带宽,如图5(a)所示,当梳状谱透射峰落在FBG反射带宽内,此时输出激光处于单波长输出状态;继续转动PC,使梳状谱波谷位置移动至FBG反射带宽中心附近时,如图5(b)所示,则此时输出的激光为双波长状态。

      图  5  FBG反射带宽与梳状光谱的实测图

      Figure 5.  Measured graph of FBG reflectance bandwidth versus comb spectrum

    • 实验中,首先在环形器2端口与FBG之间未加入PM-YDF,利用扫描法布里-珀罗干涉仪(Fabry-Pérot Interferometer, FPI, Thorlabs-SA200-8 B)检测了该光纤激光器在泵浦功率为160 mW时的输出纵模特性,如图6所示。该扫描F-P干涉仪的自由光谱范围和分辨率分别为1.5 GHz和7.5 MHz。从图6(a)中可以看出,在没有PM-YDF状态下,由于无法形成驻波干涉效应,无法形成动态光栅所产生的滤波效应,除FBG外再无滤波装置,故激光输出的是多纵模状态。当在腔内加入PM-YDF后,通过调谐PC,在PM-YDF内形成的梳状光谱和动态光栅共同作用的情况下(即图3(a)情况时),使得在光纤激光器谐振腔中形成了单纵模振荡输出,如图6(b)所示。通过长时间运转观察,始终能保持稳定的单纵模输出,没有任何模式跳跃和模式竞争现象,说明该激光器处于稳定单频激光输出状态。

      图  6  F-P干涉仪测量的纵向模式振荡

      Figure 6.  Longitudinal mode oscillation measured by F-P interferometer

      图7是该单频激光器泵浦功率与输出功率的关系曲线,激光器振荡阈值为76 mW,激光器输出激光处于单频运转,泵浦功率增大到236 mW时,激光仍然以单频状态输出;继续增加泵浦功率则会出现其他纵模。这说明此时PM-YDF中所形成的稳定光栅已经消失。

      图  7  泵浦功率与激光器输出功率曲线图

      Figure 7.  Pump power and laser output power curve

      图8(a)与图8(c)为通过光谱分析仪(Optical Spectrum Analyzer, OSA, AQ6370 C, 分辨率为0.02 nm)测量在泵浦功率为160 mW时单频激光的输出光谱。通过旋转PC,使梳状光谱进行移动(如图5(a)所示),可使激光器输出的中心波长进行切换。输出光谱的中心波长分别为1064.156 nm和1065.236 nm,从图中可以看出,该激光器的两个波长的信噪比都大于50 dB,下沿产生的波包是由于保偏光纤在光路中产生梳状谱导致的。图8(b)和图8(d)为通过OSA对该单频光纤激光器的两个波长和功率的稳定性测量,30 min内该激光器的两个波长及功率的不稳定性均在0.01 nm和0.2 dB范围内,此波动主要是由实验环境和条件引起的微小波动,如果在实验光路中加入温控器件,可以更好地提高激光器输出的稳定性。

      图  8  单频激光器光谱图及稳定性

      Figure 8.  Spectrum diagram and stability of single-frequency laser

      利用自行搭建的基于延迟自外差方法的线宽测量装置对单频光纤激光器的输出线宽进行了测量。该延时自外差法装置中延迟光纤的长度为30 km,利用声光频移器(Gooch S-M150-0.4 C2 G-3-F2 S)将拍频信号频移至150 MHz,利用频谱分析仪(KEYSIGHT N9000 A)采集由光电二极管探测器(DET08 CFC/M)探测到的拍频信号。图9所示为泵浦功率为200 mW时单频激光器输出两个波长的线宽,图9(a)与图9(b)激光波长分别为1064.156 nm和1065.236 nm的延时自外差频谱(黑线)和经过洛伦兹拟合得到曲线(红线)。从图中可以看出,在低于拍频信号峰值的20 dB处的线宽为6.92 kHz以及7.26 kHz,相应的光谱半高宽为346 Hz和363 Hz。

      图  9  延迟自外差法测量的线宽

      Figure 9.  Linewidth measured by the delayed autoheterodyne method

    • 当旋转PC,使得PM-YDF中形成的梳状光谱与FBG反射谱的相对位置如图5(b)所示时,此时单频光纤激光的波长输出状态可以由单波长变为双波长,如图10(a)所示。双波长的输出光谱分别为1064.156 nm和1065.236 nm,两中心波长间隔为1.08 nm,且光信噪比(Optical Signal to Noise Ratio,OSNR)均大于50 dB。与单波长监测方法一样采用扫描F-P标准具测量双波长单频输出信号的特征,通过扫描F-P标准具和示波器相结合观察到双波长单频激光的输出状态如图10(b)所示。

      图  10  双波长单频光纤激光器的测量

      Figure 10.  The measurement of dual-wavelength single-frequency fiber laser

      30 min内通过OSA来观察双波长单频光纤激光器输出状态下的中心波长以及输出功率的稳定性,如图11所示。双波长光谱波动如图11(a)所示,1064.156 nm波长(蓝色)较稳定没有发生改变,1065.156 nm波长(红色)在0.076 nm范围内波动。主要是由于实验环境引起的,双波长功率稳定性如图11(b),波长为1064.156 nm (蓝色)的功率在0.60 dB范围内波动,波长为1065.236 nm (红色)的功率波动范围为0.56 dB,激光输出功率与受激发射截面有关,不同波长的受激发射截面不同,所以两个波长的功率大小与波动是不一样的。实验结果表明,激光器在室温条件下较为稳定,可应用于微波信号发生器。

      图  11  双波长单频光纤激光器的波长波动及功率稳定性

      Figure 11.  Wavelength fluctuation and power stability of dual-wavelength single-frequency fiber laser

    • 文中提出了一种由三端口环形器、偏振控制器、未泵浦保偏掺镱光纤和光纤布拉格光栅组成的滤波器,通过该滤波器对谐振腔内的模式进行抑制,从而实现了窄线宽单、双波长可切换单频光纤激光器。实验采用980 nm半导体激光器作为泵浦源,掺镱光纤在谐振腔内分别作为增益介质和未泵浦可饱和吸收体,结合三端口环形器光隔离的作用保证激光在腔内单向传输,成功实现了单波长和双波长稳定的单频窄线宽激光输出,在泵浦功率为200 mW时,处于单波长运行,单波长输出测得激光器输出的最窄线宽为346 Hz,光信噪比大于50 dB。通过调节偏振控制器,实现了单波长和双波长的互相切换,在双波长输出时整体输出情况较为稳定。为窄线宽单、双波长单频光纤激光器的实现方式提供了新的途径。

参考文献 (21)

目录

    /

    返回文章
    返回