留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大视场全天时星敏感器光学系统设计

张前程 钟胜 吕劲松 李显成

张前程, 钟胜, 吕劲松, 李显成. 大视场全天时星敏感器光学系统设计[J]. 红外与激光工程, 2023, 52(3): 20220583. doi: 10.3788/IRLA20220583
引用本文: 张前程, 钟胜, 吕劲松, 李显成. 大视场全天时星敏感器光学系统设计[J]. 红外与激光工程, 2023, 52(3): 20220583. doi: 10.3788/IRLA20220583
Zhang Qiancheng, Zhong Sheng, Lv Jinsong, Li Xiancheng. Optical system design of all-time star sensor with large field-of-view[J]. Infrared and Laser Engineering, 2023, 52(3): 20220583. doi: 10.3788/IRLA20220583
Citation: Zhang Qiancheng, Zhong Sheng, Lv Jinsong, Li Xiancheng. Optical system design of all-time star sensor with large field-of-view[J]. Infrared and Laser Engineering, 2023, 52(3): 20220583. doi: 10.3788/IRLA20220583

大视场全天时星敏感器光学系统设计

doi: 10.3788/IRLA20220583
详细信息
    作者简介:

    张前程,男,工程师,博士生,主要从事天文导航技术方面的研究

  • 中图分类号: V249.32+3

Optical system design of all-time star sensor with large field-of-view

  • 摘要: 全天时星敏感器作为星敏感器的一个发展分支,在飞机、热气球等近空间载体定姿定位方面有较好的应用前景,是GPS拒止条件下的可用导航手段。大视场全天时星敏感器相较于小视场全天时星敏感器在高精度轻小型化定姿定位方面具有较大的优势,针对近空间高度大视场全天时测星对光学系统的需求,对光学系统工作波长的选取进行了分析,利用消色差和消热差设计,实现了一种能够适应高低温环境的大视场、大相对孔径的透射式光学系统,并对像质进行了分析评价。系统工作波长为0.9~1.7 μm, F/#为1.4,焦距为70 mm,视场为18°,结构总长为105 mm。试验结果表明,该光学系统具有良好的像质,能够满足大视场星敏感器白天测星要求。
  • 图  1  大气透过率(a)和大气背景辐射强度曲线(b) (6 km)

    Figure  1.  Curve of atmospheric transmissivity (a) and atmospheric background radiation intensity (b) (6 km)

    图  2  光学系统结构图

    Figure  2.  Structure diagram of optical system

    图  3  光学系统传递函数

    Figure  3.  MTF of optical system

    图  4  光学系统垂轴色差

    Figure  4.  Lateral color of optical system

    图  5  光学系统点列图

    Figure  5.  Spot diagram of optical system

    图  6  光学系统畸变图

    Figure  6.  Field curvature of optical system

    图  7  组成框图

    Figure  7.  Composition block diagram

    图  8  光学系统白天测星成像图

    Figure  8.  Daytime star imaging picture of optical system

    表  1  各波段可探测恒星数目

    Table  1.   Number of detectable stars in each band

    MagnitudeVisible bandJ bandH bandK band
    0666171232
    116177569783
    25968818252711
    3188220555788073
    457563281611121891
    51789181194556966220
    下载: 导出CSV

    表  2  不同星等条件下探测平均星数和探测概率

    Table  2.   Average star number and detection probability for different magnitude

    $ {M_V} $12345
    $ {N_{FOV}} $0.72.26.719.254.4
    $ {P_3} $0.030.370.9611
    下载: 导出CSV

    表  3  光学镜头设计参数

    Table  3.   Design parameters of optical lens

    ParameterValue
    Focal distance/mm70
    F/#1.4
    Wavelength/μm0.9-1.7
    Transmittance90%
    View/(°)18
    StructureTransmission-type
    下载: 导出CSV

    表  4  玻璃材料色散特性表

    Table  4.   Dispersion characteristics of glass materials

    GlassWavelength/nmAbbe
    number (V
    Relative partial
    Abbe number (p
    90013001700
    N-LASF311.8611.8521.84553.2810.5875
    N-KZFS111.6241.6161.60941.6280.5405
    N-PK511.5221.5181.51575.1300.5507
    N-SF661.8871.8721.86234.8880.6160
    N-LAK81.7001.6921.68547.1290.5306
    下载: 导出CSV

    表  5  设计结果

    Table  5.   Design results

    RequirementsResults
    MTF (34 lp/mm)0.40.5
    Distortion0.1%0.06%
    Field curvature/μm2.41.4
    Energy concentration (15 μm)90%95%
    下载: 导出CSV
  • [1] Ren Pingchuan, Zhou Qi, Jin He, et al. Evaluation method of star sensor dynamic accuracy [J]. Infrared and Laser Engineering, 2022, 51(3): 20210571. (in Chinese) doi:  10.3788/IRLA20210571
    [2] 何丁龙. 全天时天文导航系统关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2022. doi:10.27522/d.cnki.gkcgs.2022.000057.

    He Dinglong. Research on key technologies of all-time astronomical navigation system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
    [3] Zhang Hui, Zhou Xiangdong, Wang Xinmei, et al. Survey of technology status and development of all-time star sensors in near-earth space [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623719. (in Chinese) doi:  10.7527/S10006-893.2020
    [4] Xu Qing, Zhao Chunhui, Li Xiao. Current situation and key technologies of daytime star sensor [J]. Optical Technique, 2016, 42(6): 523-528. (in Chinese) doi:  10.13741/j.cnki.11-1879/o4.2016.06.009
    [5] Ren Bingwen, Jin Guang, Wang Tiancong, et al. Parameter design and test of airborne all-day star sensor [J]. Infrared and Laser Engineering, 2013, 42(4): 1003-1010. (in Chinese) doi:  10.3969/j.issn.1007-2276.2013.04.031
    [6] Wang Hongyuan, Wang Bingwen, Wu Shaochong, et al. Daytime all-sky radiance distribution pattern for near-earth space SWIR stellar navigation [J]. Infrared Physics & Technology, 2022, 123(2): 104121. doi:  10.1016/J.INFRARED.2022.104121
    [7] 叶志龙, 孙朔冬, 郑循江. 基于短波红外探测技术的机载式星敏感器研究 [C]//2017年光学技术研讨会暨交叉学科论坛论文集, 2017: 48-54.
    [8] Xia Mengqi, Lu Xin, Zhang Chunming, et al. Daytime star detection algorithm for an infrared shipboard star sensor [J]. Aerospace Control and Application, 2018, 44(3): 67-72. (in Chinese) doi:  10.3969/j.issn.1674-1579.2018.03.011
    [9] Pan Yue, Wang Hu, Jing Nan, et al. Parameter selection and optical design of all-day star sensor [J]. Acta Photonica Sinica, 2016, 45(1): 157-163. (in Chinese) doi:  10.3788/gzxb20164501.0122002
    [10] Fan Qiaoyun, Li Xiaojuan. Selection of optical-system parameters for an all-day used star sensor [J]. Acta Optica Sinica, 2011, 31(11): 1122001. (in Chinese) doi:  10.3788/AOS201131.1122001
    [11] Wang Wenjie, Zhang Guangjun, Wei Xinguo. Modeling analysis and experimental verification for all-time star sensor [J]. Infrared and Laser Engineering, 2019, 48(11): 1113001. (in Chinese) doi:  10.3788/IRLA201948.1113001
    [12] Zhang Luqing. Research on SWIR star detection technology in daytime [J]. Optics & Optoelectronic Technology, 2015, 13(4): 61-64. (in Chinese)
    [13] Xu Min, Wang Jianli, Chen Tao. Study on application of short wave infrared to detecting satellites in the daytime [J]. Optical Technique, 2008(2): 277-280. (in Chinese) doi:  10.13741/j.cnki.11-1879/o4.2008.02.017
    [14] Zhong Xing, Jiao Jiqiang, Jin Guang, et al. Detecting performance and overall design of airborne daytime star sensor for navigation [J]. Optics and Precision Engineering, 2011, 19(12): 2900-2906. (in Chinese) doi:  10.3788/OPE.20111912.2900
    [15] Zhao Kun, Che Chicheng. Wide spectral SWIR star sensor optical system [J]. Journal of Applied Optics, 2013, 34(1): 21-25. (in Chinese) doi:  10.5768/JAO201334.0101004
    [16] Wei Heli, Dai Congming, Wu Pengfei, et al. Applications of scene calculations of atmopsheric radiative transfer by using of CART (Invited) [J]. Infrared and Laser Engineering, 2022, 51(5): 20210916. (in Chinese) doi:  10.3788/IRLA20210916
    [17] 吴州平. 全天时星敏感器星图信噪比增强与星点提取研究[D]. 长沙: 国防科技大学, 2018. doi: 10.27052/d.cnki.gzjgu.2018.001472.

    Wu Zhouping. Star image signal-to-noise ratio enhancement technology and star centroid estimation for daytime star tracker[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
    [18] Zhang Geng, Li Chonghui, Zhang Chao, et al. Cross-validation and optimization of SWIR star catalogue in celestial navigation [J]. Acta Armamentarii, 2021, 42(11): 2368-2378. (in Chinese) doi:  10.3969/j.issn.1000-1093.2021.11.010
    [19] Dai Dongkai, Wu Zhouping, Tan Wenfeng, et al. An image signal-to-noise ratio enhancement method based on attitude correlated frames adding [J]. Journal of Chinese Inertial Technology, 2020, 28(1): 82-88. (in Chinese) doi:  10.13695/j.cnki.12-1222/o3.2020.01.013
    [20] Wu Yanxiong, Wang Liping. Optical system of star sensor with miniaturization and wide spectral band [J]. Journal of Applied Optics, 2021, 42(5): 782-789. (in Chinese) doi:  10.5768/JAO202142.0501004
    [21] Zhong Shengyou, Yao Libin, Fan Mingguo, et al. 1280×1024, 10 μm digital IRFPA readout integrated circuit design (Invited) [J]. Infrared and Laser Engineering, 2022, 51(4): 20211113. (in Chinese) doi:  10.3788/IRLA20211113
    [22] Bráulio Fonseca Carneiro de Albuquerque, Jose Sasian, Fabiano Luis de Sousa, et al. Method of glass selection for color correction in optical system design [J]. Optics Express, 2012, 20(13): 13592-13611. doi:  10.1364/OE.20.013592
    [23] Tang Tianjin, Wang Xiaoyong, Li Yan. Design of athermalizing dual-band compound optical system [J]. Optical Technique, 2016, 42(3): 215-219. (in Chinese) doi:  10.13741/j.cnki.11-1879/o4.2016.03.005
  • [1] 刘永征, 杜剑, 安秦宇宁, 杨凡超, 张昕, 李洪波.  星载遥感短波红外高速高光谱成像仪坏像元识别 . 红外与激光工程, 2023, 52(2): 20220308-1-20220308-10. doi: 10.3788/IRLA20220308
    [2] 史衍丽, 李云雪, 白容, 刘辰, 叶海峰, 黄润宇, 侯泽鹏, 马旭, 赵伟林, 张家鑫, 王伟, 付全.  短波红外单光子探测器的发展(特邀) . 红外与激光工程, 2023, 52(3): 20220908-1-20220908-16. doi: 10.3788/IRLA20220908
    [3] 于春蕾, 龚海梅, 李雪, 黄松垒, 杨波, 朱宪亮, 邵秀梅, 李淘, 顾溢.  2560×2048元短波红外InGaAs焦平面探测器(特邀) . 红外与激光工程, 2022, 51(3): 20210941-1-20210941-10. doi: 10.3788/IRLA20210941
    [4] 马旭, 李云雪, 黄润宇, 叶海峰, 侯泽鹏, 史衍丽.  短波红外探测器的发展与应用(特邀) . 红外与激光工程, 2022, 51(1): 20210897-1-20210897-12. doi: 10.3788/IRLA20210897
    [5] 张刘, 李博楠, 卢勇男, 邹阳阳, 王泰雷.  基于Offner凸面光栅星载CO2成像光谱仪光学系统设计 . 红外与激光工程, 2022, 51(7): 20220431-1-20220431-9. doi: 10.3788/IRLA20220431
    [6] 李雪, 邵秀梅, 李淘, 程吉凤, 黄张成, 黄松垒, 杨波, 顾溢, 马英杰, 龚海梅, 方家熊.  短波红外InGaAs焦平面探测器研究进展 . 红外与激光工程, 2020, 49(1): 0103006-0103006(8). doi: 10.3788/IRLA202049.0103006
    [7] 伍雁雄, 乔健, 王丽萍.  长焦距无热化星敏感器光学系统设计 . 红外与激光工程, 2020, 49(9): 20200061-1-20200061-10. doi: 10.3788/IRLA20200061
    [8] 岳宝毅, 刘钧, 郭佳, 陈阳, 李汉.  折/衍共口径红外双波段位标指示器光学系统设计 . 红外与激光工程, 2019, 48(4): 418003-0418003(9). doi: 10.3788/IRLA201948.0418003
    [9] 孟祥月, 王洋, 张磊, 付跃刚, 顾志远.  大相对孔径宽光谱星敏感器光学镜头设计 . 红外与激光工程, 2019, 48(7): 718005-0718005(8). doi: 10.3788/IRLA201948.0718005
    [10] 于磊, 陈素娟, 陈结祥, 薛辉.  精准农业观测高数值孔径短波红外成像光谱仪光学系统 . 红外与激光工程, 2018, 47(12): 1218007-1218007(7). doi: 10.3788/IRLA201847.1218007
    [11] 罗刚银, 王弼陡, 陈玉琦, 赵义龙.  Offner型消热差中波红外成像光谱仪设计 . 红外与激光工程, 2017, 46(11): 1104004-1104004(7). doi: 10.3788/IRLA201746.1104004
    [12] 张营, 丁学专, 杨波, 张宗存, 刘银年.  三分离式消热差制冷型中红外物镜的设计 . 红外与激光工程, 2016, 45(4): 418005-0418005(6). doi: 10.3788/IRLA201645.0418005
    [13] 张发强, 樊祥, 朱斌, 程正东, 方义强.  折衍混合长波红外光学系统消热差设计 . 红外与激光工程, 2015, 44(4): 1158-1163.
    [14] 郭彦池, 徐熙平, 乔杨, 米士隆, 杜玉楠.  大视场宽谱段星敏感器光学系统设计 . 红外与激光工程, 2014, 43(12): 3969-3972.
    [15] 江帆, 王忠素, 陈立恒, 吴清文, 郭亮.  星敏感器组件的热设计 . 红外与激光工程, 2014, 43(11): 3740-3745.
    [16] 高铎瑞, 付强, 赵昭, 钟刘军.  摄远型红外8~12μm波段消热差物镜设计 . 红外与激光工程, 2014, 43(11): 3837-3842.
    [17] 付跃刚, 黄蕴涵, 刘智颖.  双波段消热差红外鱼眼光学系统设计 . 红外与激光工程, 2014, 43(10): 3329-3333.
    [18] 孙高飞, 张国玉, 高玉军, 王凌云, 苏拾, 付芸, 王向东.  星敏感器地面标定设备的设计 . 红外与激光工程, 2013, 42(10): 2822-2827.
    [19] 任秉文, 金光, 王天聪, 钟兴, 张鹏.  机载全天时星敏感器参数设计及实验 . 红外与激光工程, 2013, 42(4): 1003-1010.
    [20] 何永强, 唐德帅, 胡文刚.  基于DMD的红外场景仿真系统投影光路消热差设计 . 红外与激光工程, 2013, 42(9): 2319-2323.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  47
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-10-17
  • 刊出日期:  2023-03-25

大视场全天时星敏感器光学系统设计

doi: 10.3788/IRLA20220583
    作者简介:

    张前程,男,工程师,博士生,主要从事天文导航技术方面的研究

  • 中图分类号: V249.32+3

摘要: 全天时星敏感器作为星敏感器的一个发展分支,在飞机、热气球等近空间载体定姿定位方面有较好的应用前景,是GPS拒止条件下的可用导航手段。大视场全天时星敏感器相较于小视场全天时星敏感器在高精度轻小型化定姿定位方面具有较大的优势,针对近空间高度大视场全天时测星对光学系统的需求,对光学系统工作波长的选取进行了分析,利用消色差和消热差设计,实现了一种能够适应高低温环境的大视场、大相对孔径的透射式光学系统,并对像质进行了分析评价。系统工作波长为0.9~1.7 μm, F/#为1.4,焦距为70 mm,视场为18°,结构总长为105 mm。试验结果表明,该光学系统具有良好的像质,能够满足大视场星敏感器白天测星要求。

English Abstract

    • 星敏感器通过观测恒星实现高精度恒星矢量测量或惯性姿态测量,具有精度高、抗干扰性强和隐蔽性好等特点。但常规星敏感器主要以可见光探测为主,受天空背景辐射影响,只能在夜间或者大气层外才能实现测星功能[1]

      在海拔6~20 km的近空间高度,如何实现全天时测星是星敏感器函需解决的问题[2]。美国、意大利等国外机构和学者在20世纪80年代初期就开始对全天时星敏感器及其光学系统进行研究,主要以小视场、多探头方案为主,系统庞杂[3-4]。国内相关的研究起步稍晚,北京控制工程研究所、上海航天控制技术研究所、北京航空航天大学、中国科学院长春光学精密机械与物理研究所和华中光电技术研究所等单位都曾对全天时星敏感器及其光学系统进行研究[5-15]。国内科研机构白天测星一般采用跟踪轴系和小视场光学系统测星,普遍存在需多次观星测量、跟踪轴系误差对精度影响大、体积和质量大等问题;少部分采用中视场光学系统测星(一般视场在5°以下),但白天中视场光学系统测星受探测能力限制,仍需要跟踪轴系辅助测星;部分中视场测星方案无跟踪轴系,采用长焦距大口径方案增强星等强探测能力,同样存在体积和质量大的问题。此外,全天时星敏感器主要工作在近空间高度,受载体运动、姿态变化和太阳光照射等原因,高低温环境恶劣,因此光学系统需要在高低温(−45~+60 ℃)的环境下使用,现有星敏感器光学系统方案也难以适应上述宽温工作范围。

      光学系统作为星敏感器的关键部件之一,用于星敏感器的星目标成像。大视场光学系统方案星敏感器一次观星可获得小视场星敏感器多次观星的结果,省去了复杂的跟踪轴系,在测星精度、体积和质量、使用寿命、维护性、可靠性以及成本等方面都具有较大优势。一款优良的光学系统是实现大视场全天时测星功能的前提。文中在国内外全天时星敏感器研究的基础上,结合系统对轻小型化、宽温工作范围的要求,针对大视场全天时星敏感器,设计了一种宽光谱、大视场、大相对孔径的全天时无热化星敏感器镜头。

    • 全天时星敏感器探测到的信号主要由天空背景辐射、背景噪声及恒星辐射组成,这些信号强度均会受到大气的影响。背景噪声的强度受天空背景辐射的影响,天空背景辐射越强,背景噪声强度也越大。可利用通用大气辐射传输软件计算大气透过率和背景辐射[16]。选择一个良好的大气探测窗口作为探测器工作光谱,能够很好地减弱探测器接收到的天空背景辐射强度,抑制背景噪声强度,同时增强恒星辐射强度,进而提高星图信噪比[17]

      传统大视场全天时测星技术采用可见光波段,一般应用在40 km及以上高度。但由于近空间6~20 km高度可见光波段白天天空背景辐射依然较强烈,严重影响大视场测星信噪比,而且在较大的测星视场情况下,可见光波段测星传感器的势阱不足以支持足够的测星积分时间,造成测星信噪比的进一步下降。因此,传统可见光波段大视场测星技术在近空间6~20 km高度并不适用。

      图1(a)为海拔6 km高度不同波长下大气透过率,短波红外J波段(1.25 μm附近)和H波段(1.65 μm附近)均为大气窗口[18],大气传输透过率较高;图1(b)为海拔6 km高度不同波长下的大气背景辐射强度,短波红外波段的大气背景强度比可见光波段要低两三个数量级。

      图  1  大气透过率(a)和大气背景辐射强度曲线(b) (6 km)

      Figure 1.  Curve of atmospheric transmissivity (a) and atmospheric background radiation intensity (b) (6 km)

      表1为不同波段可探测恒星数目,短波红外波段的星数量比可见光波段要多很多,在相同测星能力的情况下,短波红外波段的测星概率大。通常情况下短波红外探测器的满阱电荷相比可见光要高,更不容易饱和,可以提升光学系统孔径和积分时间,进而提升白天测星灵敏度和信噪比;短波红外探测器读出速度快、帧频高,可多帧叠加进一步提升测星信噪比[19]

      表 1  各波段可探测恒星数目

      Table 1.  Number of detectable stars in each band

      MagnitudeVisible bandJ bandH bandK band
      0666171232
      116177569783
      25968818252711
      3188220555788073
      457563281611121891
      51789181194556966220

      因此,选用短波红外波段探测是解决6~20 km高度大视场全天时测星问题的有效途径。

      光学系统设计时加长焦距,更容易实现大口径设计提升测星能力,但受限于星敏感器适装性,光学镜头结构形式采用透射式,星敏感器光学系统焦距不能过长,根据星敏感器长度要求,光学系统焦距取为70 mm。星敏感器设计时采用昆明物理研究所量产的国产大面阵短波红外探测器,分辨率为640×512,像元大小为15 μm×15 μm,工作波长为0.9~1.7 μm,则星敏感器视场大小为7.8°×6.3°,视场对角线为10°,等效方形视场为7°。

      根据如下公式可计算等效视场内的可探测星体个数和视场内星数探测概率:

      $$ {N_{FOV}} = N\left( {{M_{V\max }}} \right)\left\{ {\frac{1}{2} - \frac{1}{\pi }\arccos \left[ {{{\sin }^2}\left( {\frac{{{\theta _{FOV}}}}{2}} \right)} \right]} \right\} $$ (1)
      $$ P_N=1-\sum_{k=0}^{N-1} {\rm{e}}^{-N_{F O V}} N_{F O V}^k / k !$$ (2)

      式中:$ {N_{FOV}} $为视场$ {\theta _{FOV}} $内对应天区的恒星平均数目;$ {M_V} $为星等;$ N\left( {{M_{V\max }}} \right) $为全天区星等小于或等于$ {M_V} $的恒星总数;$ {P_N} $为视场内至少出现$ N $颗星的概率。

      在H波段测星能力不同星等条件下,视场可探测星个数和视场内大于三颗星的概率见表2。其中,$ {P_3} $为视场内大于等于三颗星的探测概率。

      表 2  不同星等条件下探测平均星数和探测概率

      Table 2.  Average star number and detection probability for different magnitude

      $ {M_V} $12345
      $ {N_{FOV}} $0.72.26.719.254.4
      $ {P_3} $0.030.370.9611

      星敏感器视场内至少需要三颗星才能完成星图识别,根据表2所示的结果,只有在探测器H波段测星能力大于+3等星时,才能较好地满足星敏感器星图识别需求。

      伍雁雄等人分析了光学口径和星等探测灵敏度的数学模型[20],根据该模型,在积分时间30 ms、6 km天空背景辐射强度实现探测星等3等星,所需的光学系统口径不小于50 mm。

      昆明物理研究所、国惠光电科技有限公司等研制的1280×1024高分辨率短波红外探测器即将量产[21],像元尺寸覆盖10~15 μm。大靶面探测器将进一步增加视场内的探测星数,有效降低星敏感器系统对测星能力的要求,下探星敏感器工作海拔。星敏感器光学系统设计时视场取为18°圆视场,可保证对大部分高分辨率探测器的兼容性(1280×1024分辨率,10~15 μm像元大小,70 mm焦距对应的圆视场为视场13.4°~20°)。

      根据大气辐射影响和可探测恒星数分析可知,采用短波红外的星敏感器接收到的信号信噪比高,能有效识别一定数量的恒星。根据上述分析过程,拟定大视场全天时星敏感器光学系统基本参数,如表3所示。

      表 3  光学镜头设计参数

      Table 3.  Design parameters of optical lens

      ParameterValue
      Focal distance/mm70
      F/#1.4
      Wavelength/μm0.9-1.7
      Transmittance90%
      View/(°)18
      StructureTransmission-type
    • 由于光学系统的波段比较宽,必须消色差才能获得较好的成像质量。光学系统对两种色光校正位置色差后,即两种色光的焦点相重合,其相对于第三种色光的焦点仍有偏离,这种偏离则称为二级光谱[22]

      根据薄透镜的像差理论,二级光谱与系统结构无关,由玻璃的色散决定,其大小与焦距成正比,在消色差和二级光谱时,尽量选择阿贝数相差大、而部分色散相近的玻璃材料。对于宽波段光学系统,将部分色散(p)和阿贝数(V)表达式改为:

      $$ {p_{\lambda_3}} = \frac{{{N_{\lambda _3}} - {N_{\lambda_1}}}}{{{N_{\lambda _1}} - {N_{\lambda_2}}}} $$ (3)
      $$ V = \frac{{{N_{\lambda _3}} - 1}}{{{N_{\lambda _1}} - {N_{\lambda _2}}}} $$ (4)

      式中:$ {\lambda _1} = 700 \;{\rm{nm}} $${\lambda _2} = 1\;700 \;{\rm{nm}}$${\lambda _3} = 1\;300 \;{\rm{nm}}$$ {N_\lambda } $为玻璃在波长$ \lambda $处的折射率。根据以上公式对玻璃材料库中的数据进行分析,选取合适的材料,如表4所示。

      表 4  玻璃材料色散特性表

      Table 4.  Dispersion characteristics of glass materials

      GlassWavelength/nmAbbe
      number (V
      Relative partial
      Abbe number (p
      90013001700
      N-LASF311.8611.8521.84553.2810.5875
      N-KZFS111.6241.6161.60941.6280.5405
      N-PK511.5221.5181.51575.1300.5507
      N-SF661.8871.8721.86234.8880.6160
      N-LAK81.7001.6921.68547.1290.5306

      为了实现在−45~+60 ℃清晰成像,系统采用光学无热化设计。根据像差理论和光学无热化设计原理,同时校正色差、二级光谱和热差时,需要同时满足以下条件[23]

      $$ \varPhi = \frac{1}{{{h_1}}}\sum\limits_i {{h_i}} {\varPhi _i} $$ (5)
      $$ \Delta {f_{1b}} = {\left( {\frac{1}{{{h_1}}}\varPhi } \right)^2}\sum\limits_{i = 1}^k {\left( {h_i^2{c_{1i}}{\varPhi _i}} \right)} $$ (6)
      $$ \Delta {f_{2b}} = {\left( {\frac{1}{{{h_1}}}\varPhi } \right)^2}\sum\limits_{i = 1}^k {\left( {h_i^2{c_{2i}}{\varPhi _i}} \right)} $$ (7)
      $$ \frac{{\partial {f_b}}}{{\partial T}} = {\left( {\frac{1}{{{h_1}}}\varPhi } \right)^2}\sum\limits_{i = 1}^k {\left( {h_i^2{T_i}{\varPhi _i}} \right)} $$ (8)
      $$ T = \frac{{{\rm{d}}n/{\rm{d}}t}}{{n - 1}} - {\alpha _g} $$ (9)

      式中:$\varPhi$为系统的总光焦度;$ k $为透镜的个数;${\varPhi _i}$为第$ i $块透镜的光焦度;$ {h_i} $为第一近轴光线在透镜组上的高度;$ {f_b} $为光学系统的后焦距;$ {c_1} $$ {c_2} $为透镜在工作波段的归一化系数;$ T $为热差系数;$ n $为材料折射率;$ {\alpha _g} $为材料的膨胀系数。

      在设计时,首先对光学系统消色差,然后根据消热差条件合理选择玻璃材料,同时分配光学镜片的光焦度,使光学镜片引起的热差和铝合金的热差相互补偿,从而保持像面稳定,实现光学无热化。

    • 采用复杂化的高斯结构对光路进行优化,最后的光学系统如图2所示。系统总长104.5 mm。其中光学材料依次为N-LASF31、N-KZFS11/N-PK51、N-LAF2、N-SF66、N-LASF31、N-LASF31、N-LAK8。

      图  2  光学系统结构图

      Figure 2.  Structure diagram of optical system

      图3(a)~(c)分别为常温、低温和高温条件下的光学传递函数(MTF)曲线。MTF表征光学系统分辨细节的能力,该值越大,对比度越高,说明镜头的成像质量越好。

      图  3  光学系统传递函数

      Figure 3.  MTF of optical system

      常温条件下,在奈奎斯特频率34 lp/mm处的MTF大于0.6,可以看到,传函曲线平缓,子午和弧矢分离较小,色差和像散较小,成像质量良好。

      光学系统在−45~+60 ℃、奈奎斯特频率34 lp/mm处时,MTF值均在0.5以上,消热差后成像质量良好,传函下降小于0.1,受温度影响不大。

      垂轴色差即倍率色差,垂轴色差表征各波长在像面的偏离程度,光学系统垂轴色差如图4所示,在全视场范围内,垂轴色差在衍射极限内,色差校正良好。

      图  4  光学系统垂轴色差

      Figure 4.  Lateral color of optical system

      由于光学系统存有像差,点物发出的光线经过光学系统后,在像面汇聚成一个散开的区域,用该区域的大小来评价光学系统的成像质量,点斑越小,说明能量越集中,成像质量越好。光学系统的点列图如图5所示,图中,RMS半径均小于像元尺寸,点斑大小均匀、圆整,在图像处理时能快速、高精度地提取星点质心。

      光学系统畸变过大会让图像失真,影响测量精度,如图6所示,在全视场范围内最大畸变小于1‰,满足使用需求。表5所示为光学系统设计结果。

      图  5  光学系统点列图

      Figure 5.  Spot diagram of optical system

      图  6  光学系统畸变图

      Figure 6.  Field curvature of optical system

      表 5  设计结果

      Table 5.  Design results

      RequirementsResults
      MTF (34 lp/mm)0.40.5
      Distortion0.1%0.06%
      Field curvature/μm2.41.4
      Energy concentration (15 μm)90%95%
    • 为了验证大视场全天时测星方案的可行性,研制了大视场全天时星敏感器样机,大视场全天时星敏感器样机由光学系统、探测器、处理电路、通讯接口及配套结构件组成,样机组成框图如图7所示。其中光学系统主要将无穷远恒星平行光会聚在探测器靶面上,探测器将接收的光信号转换成电信号,处理电路完成电信号调理、星点检测、星图识别和姿态解算等,通讯接口完成信息和图像输出。

      图  7  组成框图

      Figure 7.  Composition block diagram

      利用该大视场全天时星敏感器对白天天空场景进行成像来测试光学系统的成像性能。9月11日18:28 (19:57日落)在青海省海西州大柴旦地区(海拔3100 m,天气晴)进行了白天观星试验,曝光时间为30 ms,天空成像星图如图8所示。图中abcde分别对应星点的局部放大图,括号上面是H波段星等,括号里面分别是赤经赤纬,图中右下角为该天区星库内实际导航星位置分布。

      图  8  光学系统白天测星成像图

      Figure 8.  Daytime star imaging picture of optical system

      从成像测试图中可以看出,该光学系统目标成像层次分明,星像清晰,能够很好地满足大视场全天时星敏感器对光学系统的成像需求。应用该光学系统的大视场全天时星敏感器仅重1.25 kg,相较于小视场全天时星敏感器动辄10 kg以上的重量,在适装性上有较大的优势。

    • 文中针对全天时星敏感器对轻小型化、宽温工作范围的要求,根据消色差、消热差理论,分析了宽波段的光学材料特性,设计了一款大视场全天时星敏感器用光学系统。在海拔3 km高度利用该光学系统开展了地面白天测星试验,试验结果表明多个星目标在白天被成功探测。所设计的光学系统可适配大靶面测星相机以增大视场,进一步增加白天测星数量,下探全天时星敏感器的工作海拔。所设计的全天时星敏感器光学系统满足大视场星敏感器全天时多星测量需求,将对推动全天时星敏感器技术应用到近空间领域产生积极意义。

参考文献 (23)

目录

    /

    返回文章
    返回