留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于冷光学长波红外杜瓦组件杂散光分析与抑制

朱海勇 陈俊林 曾智江 王小坤 李亚冉 王溪 李雪

朱海勇, 陈俊林, 曾智江, 王小坤, 李亚冉, 王溪, 李雪. 用于冷光学长波红外杜瓦组件杂散光分析与抑制[J]. 红外与激光工程, 2023, 52(7): 20220823. doi: 10.3788/IRLA20220823
引用本文: 朱海勇, 陈俊林, 曾智江, 王小坤, 李亚冉, 王溪, 李雪. 用于冷光学长波红外杜瓦组件杂散光分析与抑制[J]. 红外与激光工程, 2023, 52(7): 20220823. doi: 10.3788/IRLA20220823
Zhu Haiyong, Chen Junlin, Zeng Zhijiang, Wang Xiaokun, Li Yaran, Wang Xi, Li Xue. Stray light analysis and suppression of long-wave infrared Dewar component for cold optics[J]. Infrared and Laser Engineering, 2023, 52(7): 20220823. doi: 10.3788/IRLA20220823
Citation: Zhu Haiyong, Chen Junlin, Zeng Zhijiang, Wang Xiaokun, Li Yaran, Wang Xi, Li Xue. Stray light analysis and suppression of long-wave infrared Dewar component for cold optics[J]. Infrared and Laser Engineering, 2023, 52(7): 20220823. doi: 10.3788/IRLA20220823

用于冷光学长波红外杜瓦组件杂散光分析与抑制

doi: 10.3788/IRLA20220823
基金项目: 地球大数据科学工程项目 (XDA19010102)
详细信息
    作者简介:

    朱海勇,男,工程师,硕士,主要从事红外探测器封装与集成技术方面的研究

    通讯作者: 曾智江,男,高级工程师,博士,主要从事红外探测器封装与集成技术方面的研究。
  • 中图分类号: TN215

Stray light analysis and suppression of long-wave infrared Dewar component for cold optics

Funds: Big Earth Data Science Engineering Project (XDA19010102)
  • 摘要: 红外谱段(8~12.5 μm)作为红外对地光学载荷的主要探测谱段,在对地遥感领域发挥着重要的作用。以红外成像仪载荷的杜瓦组件为研究对象,宽幅高分辨率红外系统的光机结构作为输入边界,分析了关键面对系统杂散光的影响。为了抑制杂散光和降低背景辐射,利用柔性波纹管隔热实现200 K窗口和窗口帽低温设计。进一步分析了杜瓦组件窗口、窗口外壳、冷屏结构及表面处理工艺等对杜瓦内部杂散光的影响。冷屏采用三级挡板设计,滤光片为三波段集成,同时在考虑装配和加工精度的情况下,冷屏和滤光片支架采用分离方式。卫星红外成像仪载荷在轨运行良好,成像效果较好。为杜瓦设计和加工选择提供了一定依据。
  • 图  1  探测器杜瓦封装结构

    Figure  1.  Detector Dewar package structure

    图  2  (a)光学-机械模型;(b)关键面的辐射杂散比及百分比

    Figure  2.  (a) Opto-mechanical structure; (b) Radiated spurious ratio and percentage of critical surfaces

    图  3  杜瓦在低温光学系统中光学示意图

    Figure  3.  Schematic diagram of Dewar in low temperature optical system

    图  4  辐射杂散比与温度关系曲线。(a)杜瓦窗口;(b)杜瓦窗口帽

    Figure  4.  Radiation spurious ratio versus temperature curve. (a) Dewar window; (b) Dewar window cap

    图  5  不同厚度下窗口中心变形

    Figure  5.  Window center deformation under different thicknesses

    图  6  不同波段下窗口余量的镜筒辐射杂散比

    Figure  6.  Radiation spurious ratio of lens barrel with window allowance under different waveband

    图  7  77 K液氮下杜瓦温度场分布

    Figure  7.  Dewar temperature field distribution under 77 K liquid nitrogen

    图  8  冷屏开口高度与探测器立体角分布:(a) 18.3 mm, (b) 23.3 mm,(c) 28.3 mm,(d) 33.3 mm, (e) 38.3 mm,(f)探测器不均匀性、平均立体角与冷屏高度的函数关系

    Figure  8.  Cold shield opening height and detector solid angle distribution: (a) 18.3 mm, (b) 23.3 mm, (c) 28.3 mm, (d) 33.3 mm, (e) 38.3 mm, (f) Detector inhomogeneity, average solid angle as a function of cold screen height

    图  9  不同冷屏高度下的镜筒辐射杂散比

    Figure  9.  Spurious ratio of lens barrel radiation under different cold screen heights

    图  10  针对冷屏漫发射冷屏挡板设计

    Figure  10.  Design of cold screen baffle for cold screen diffuse emission

    图  11  冷屏的PST

    Figure  11.  PST of cold screen

    图  12  在轨成像彩图

    Figure  12.  Color map of on-orbit imaging

    表  1  制冷探测器杜瓦组件低温试验数据

    Table  1.   Low temperature test data of integrated detector Dewar assembly

    Cryocooler working
    condition
    Temperature of
    detector/K
    Dewar leakage
    heat/mW
    Temperature of
    cold end bellow/K
    Temperature of
    hot end bellows/K
    Insulation effect
    of bellow/K
    Cooler power
    consumption/W
    High temperature
    conditions (pluse 263 K,
    window cap 228 K)
    60762230.49267.7137.2252.08
    55776222.47263.440.9361.6
    60544215.52253.1637.6446.84
    Low temperature
    conditions (pulse 228 K,
    window cap 193 K)
    55557194.25242.3148.0656.52
    50575194.41241.0446.6365.72
    下载: 导出CSV

    表  2  关键面的辐射杂散比

    Table  2.   Radiated spurious ratios for critical surfaces

    Critical surface8-10.5/μm10.3-11.3/μm11.5-12.5/μm
    Lens cone0.067640.130110.19285
    Lens0.008620.042550.00418
    Dewar window0.021190.059740.09256
    Dewar window cap0.013910.038660.05213
    Total0.111360.271060.34172
    下载: 导出CSV

    表  3  组件主要性能指标

    Table  3.   Main performance indicators

    Wave band11.5-12.5 μm8-10.5 μm10.3-11.3 μm
    Response inhomogeneity<10%
    Dark current/nA≤5
    Peak detectivity/
    cm·Hz1/2·W−1
    5.27E103.12E106.66E10
    Responivity/V·W−16.03E61.05E79.07E6
    Total NSR0.340.110.27
    下载: 导出CSV
  • [1] Sun Z L, Hui B, Qin M F, et al. Object detection method based on saliency measure for in frared radiation image [J]. Infrared and Laser Engineering, 2015, 44(9): 2633-2637. (in Chinese)
    [2] Zhao H J, Gu J R, Ji Z, et al. Application on of infrared multi-spectral technique in the diurnal cycle detection [J]. Infrared and Laser Engineering, 2018, 47(2): 0201002. (in Chinese)
    [3] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors [J]. Remote Sensing of Environment, 2009, 113(5): 893-903. doi:  10.1016/j.rse.2009.01.007
    [4] Montanaro M, Barsi J, Lunsford A, et al. Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit[C]//Earth Observing Systems XIX. International Society for Optics and Photonics, 2014, 921817: 921817.14
    [5] Xiong X, Sun J, Wu A, et al. Terra and aqua MODIS calibration algorithms and uncertainty analysis [C]//Proceedings of SPIE, 2005, 5978: 59780V.
    [6] Wu Hongyu, Bai Yang, Wang Lingli, et al. On orbit geometric calibration and accuracy verification of Jilin1-KF01A WF camera [J]. Opticals and Precision Engineering, 2021, 29(8): 1769-1781. (in Chinese) doi:  10.37188/OPE.20212908.1769
    [7] Xue Qingshen, Bai Haoxuan, Li Hui, et al. Research progress of underwater hyperspectral imging detection technology [J]. Acta Photonica Sinica, 2021, 50(12): 1058733. (in Chinese)
    [8] Chen Hongshun, He Hui, Xiao Hongyu, et al. Shadow detection in high spatial resolution remote sensing images based on spectral features [J]. Optics and Precision Engineering, 2015, 23(10z): 484-490. (in Chinese)
    [9] Chen Shihan, Li Ling, Jiang Hongfan, et al. Detecting the influence of environmental changes on air temperature based on high spatial resolution satellite remote sensing data [J]. Acta Optics Sinica, 2020, 40(10): 1028001. (in Chinese)
    [10] Wei Guihuang, Zheng Zhizhong. Auto focusing method of push broom hyperspectral camera [J]. Optics and Precision Engineering, 2019, 27(2): 450-457. (in Chinese) doi:  10.3788/OPE.20192702.0450
    [11] Niu J X, Zhang T. Analysis of stray radiation of infrared system to detect dim and small target [J]. Infrared and Laser Engineering, 2013, 42(7): 1665-1668. (in Chinese)
    [12] Sun Chengming, Zhao Fei, Zhang Ze. Stray light analysis of large aperture optical telescope using TracePro [C]//SPIE, 2014, 9298: 92981F.
    [13] Wang Jingyi, Chen Yanwu. Study on the stray light suppression of fundus camera [J]. Applied Mechanics and Materials, 2013, 271: 1664-1668.
    [14] Wang Wei. Research on infrared optical system with large field of view in geostationary orbit [D]. Beijing: Chinese Academy of Sciences, 2015. (in Chinese)
    [15] 于清华, 俞侃, 刘祥彪译. 杂散光抑制设计与分析[M]. 武汉: 华中科技大学出版社, 2019.
    [16] Du Shusong, Wang Yongmei, Du Guojun, et al. Stray light analysis of interference imaging spectrometer [J]. Applied Optics, 2009, 30(2): 246-251. (in Chinese)
    [17] Fang Da, Ming Xing, Liu Xiyue, et al. Thermal optical analysis and design of optical window in highaltitude and high-speed environment [J]. Infrared and Laser Engineering, 2016, 45(8): 0818001. (in Chinese)
    [18] Li Ming, Wu Qingwen, Yu Fei, et al. Optimization of optical window glass thickness based on the thermal optical analysis [J]. Acta Optica Sinica, 2010, 30(1): 210-213. (in Chinese) doi:  10.3788/AOS20103001.0210
    [19] Zhang Lei, Zhang Song, Wang Haiwei, et al. Temperature adaptability design and experiment of optical windows for image quality detection [J]. Journal of Applied Optics, 2022, 43(1): 30-35. (in Chinese) doi:  10.5768/JAO202243.0101005
  • [1] 周志远, 史保森.  基于频谱迁移的红外探测研究进展(特邀) . 红外与激光工程, 2023, 52(5): 20230165-1-20230165-11. doi: 10.3788/IRLA20230165
    [2] 杨开宇, 金宁, 杨丹, 普龙, 徐曼, 董树林, 苏雷.  基于二维函数PST的离轴四反系统杂散光分析 . 红外与激光工程, 2023, 52(1): 20220330-1-20220330-9. doi: 10.3788/IRLA20220330
    [3] 司俊杰.  基于InSb的新型红外探测器材料(特邀) . 红外与激光工程, 2022, 51(1): 20210811-1-20210811-19. doi: 10.3788/IRLA20210811
    [4] 史屹君, 徐子奇.  星敏感器光学系统设计及杂散光抑制技术研究 . 红外与激光工程, 2021, 50(9): 20210015-1-20210015-6. doi: 10.3788/IRLA20210015
    [5] 王莹莹, 何苹, 孟常亮.  星载红外探测器对高超声速飞行器探测距离的计算 . 红外与激光工程, 2019, 48(7): 704003-0704003(7). doi: 10.3788/IRLA201948.0704003
    [6] 徐节速, 胡中文, 徐腾, 厉宏兰, 李倩, 姚梦远.  激光引力波望远镜镜面杂散光测试方法 . 红外与激光工程, 2019, 48(9): 913001-0913001(8). doi: 10.3788/IRLA201948.0913001
    [7] 刘大福, 徐勤飞, 汪洋, 贾嘉, 袁洪辉.  第二代静止轨道气象卫星用多波段红外探测器封装及性能 . 红外与激光工程, 2018, 47(4): 404007-0404007(8). doi: 10.3788/IRLA201847.0404007
    [8] 王臣臣, 邹刚毅, 李瑞昌, 樊学武.  偏视场光学系统中心遮光罩设计 . 红外与激光工程, 2017, 46(3): 318002-0318002(5). doi: 10.3788/IRLA201746.0318002
    [9] 李俊麟, 张黎明, 司孝龙, 黄文薪, 杜志强, 徐伟伟, 王戟翔, 许永平, 杨宝云, 朱雪梅, 汪少林, 马文佳, 杨春燕, 李阳.  光学遥感卫星杂散光扫描测试系统 . 红外与激光工程, 2017, 46(9): 913001-0913001(6). doi: 10.3788/IRLA201746.0913001
    [10] 李扬裕, 方勇华, 李大成, 李亮.  平板波导光谱仪中光栅多次衍射杂散光的抑制 . 红外与激光工程, 2016, 45(7): 724001-0724001(5). doi: 10.3788/IRLA201645.0724001
    [11] 张士成, 杨立, 石恒.  基于射线跟踪算法的舰船尾迹波红外特征与探测 . 红外与激光工程, 2015, 44(5): 1450-1455.
    [12] 李双, 裘桢炜, 王相京.  星载大气主要温室气体监测仪杂光模拟分析 . 红外与激光工程, 2015, 44(2): 616-619.
    [13] 李陶然, 姜晓军.  50BiN望远镜杂散光分析及控制方案 . 红外与激光工程, 2015, 44(12): 3615-3620.
    [14] 白瑜, 廖志远, 李华, 程习敏, 邢廷文, 蒋亚东.  折反射中波红外探测无热化成像系统设计分析 . 红外与激光工程, 2015, 44(2): 407-412.
    [15] 刘洋, 方勇华, 吴军, 雒静, 李扬裕.  中红外平面光栅光谱仪系统杂散光分析 . 红外与激光工程, 2015, 44(4): 1164-1171.
    [16] 周炜, 欧阳程, 吴敬, 高艳卿, 黄志明.  锰钴镍铜氧薄膜红外探测器制备与性能研究 . 红外与激光工程, 2014, 43(4): 1073-1079.
    [17] 欧阳程, 吴敬, 周炜, 高艳卿, 侯云, 黄志明.  磁控溅射制备Mn-Co-Ni-O热敏红外探测薄膜 . 红外与激光工程, 2014, 43(4): 1068-1072.
    [18] 徐亮, 赵建科, 薛勋, 周艳, 刘峰.  月基望远镜杂散光PST研究与测试 . 红外与激光工程, 2014, 43(4): 1289-1295.
    [19] 孟卫华, 项建胜, 倪国强.  一种折反二次成像式长波光学系统的杂散光抑制 . 红外与激光工程, 2013, 42(4): 966-970.
    [20] 王文芳, 杨晓许, 姜凯, 梅超, 李刚, 张恒金.  大视场红外折反光学系统杂散光分析 . 红外与激光工程, 2013, 42(1): 138-142.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  14
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-25
  • 修回日期:  2023-03-15
  • 刊出日期:  2023-07-25

用于冷光学长波红外杜瓦组件杂散光分析与抑制

doi: 10.3788/IRLA20220823
    作者简介:

    朱海勇,男,工程师,硕士,主要从事红外探测器封装与集成技术方面的研究

    通讯作者: 曾智江,男,高级工程师,博士,主要从事红外探测器封装与集成技术方面的研究。
基金项目:  地球大数据科学工程项目 (XDA19010102)
  • 中图分类号: TN215

摘要: 红外谱段(8~12.5 μm)作为红外对地光学载荷的主要探测谱段,在对地遥感领域发挥着重要的作用。以红外成像仪载荷的杜瓦组件为研究对象,宽幅高分辨率红外系统的光机结构作为输入边界,分析了关键面对系统杂散光的影响。为了抑制杂散光和降低背景辐射,利用柔性波纹管隔热实现200 K窗口和窗口帽低温设计。进一步分析了杜瓦组件窗口、窗口外壳、冷屏结构及表面处理工艺等对杜瓦内部杂散光的影响。冷屏采用三级挡板设计,滤光片为三波段集成,同时在考虑装配和加工精度的情况下,冷屏和滤光片支架采用分离方式。卫星红外成像仪载荷在轨运行良好,成像效果较好。为杜瓦设计和加工选择提供了一定依据。

English Abstract

    • 随着国家空间技术的发展,红外遥感技术得到广泛的应用。红外遥感技术可以对陆地和海洋海域进行大范围、全方位的连续检测。相对于传统检测方法,红外遥感技术能更好应对复杂多变的环境[1-2]。近年来,红外遥感仪已被多颗卫星搭载而得到应用[3-5]

      然而,随着空间成像光学技术的发展,对成像卫星的探测性能的要求不断提高,成像卫星也向高光谱分辨率、高空间分辨率和宽幅技术方向发展[6-10]。目前,红外成像仪在分辨率、幅宽等方面还在提升,如委内瑞拉的遥感卫星(VRSS)红外相机、美国宇航局极地轨道环境遥感卫星(ASTER)红外相机和中国环境卫星(HJ-1B IRS)红外相机等。红外成像仪采用摆扫的方法实现了30 m的空间分辨率和300 km的幅宽,保证高分辨率的同时提高了成像幅宽。然而高分辨率大视场红外遥感仪在对弱目标遥感信息提取时,杂散光对其的影响显得尤为突出[11],如果对杂散光抑制不足,轻则造成像面能量分布不均,从而导致信噪比和调制传递函数(MTF)下降,非均匀性变差。严重时,探测器的探测信号被背景辐射的杂散光湮没,从而导致探测器失效[12]。因此,对红外成像仪进行杂散光抑制设计是保证其在轨成像质量的前提。而长波红外杜瓦组件作为成像仪的重要组成部分,由于杜瓦组件光学结构靠近探测器,探测器对杜瓦组件光学结构更敏感,因此对杜瓦组件杂散光抑制设计显得尤为重要。

      杂散光是指光学系统中除成像光线外到达探测器像面上的光线。根据杂散光的来源不同可以分为3种[13]:1)光学系统外部杂散光经过光学系统到达探测器像面,如太阳光、月光等;2)成像光线通过非预期光路到达探测器像面;3)内部杂散光,也称热背景或近场杂散光。对于红外探测系统,尤其是工作波段在长波的探测系统,内部杂散光往往对探测器成像质量提高起到关键性影响。

      针对多模块拼接的长线列摆扫式红外热像仪(TIRI)设计实现高分辨率大视场易受杂散光影响的问题,以红外成像仪长波红外杜瓦组件为研究对象,杜瓦采用特殊支撑与隔热结构实现杜瓦组件200 K低温光窗的设计,并对冷光学用长波红外杜瓦组件的杂散光进行了一系列的仿真优化分析。

    • 图1为红外探测器杜瓦封装结构。杜瓦主要包括窗口、窗口帽、冷屏、滤光片支架、探测器、冷指和波纹管等。根据普朗克黑体辐射方程,辐射强度是波长和温度的函数,可表示为:

      $$ M\left(\mathrm{\lambda },{T}\right)=\frac{2\mathrm{\pi }h{{c}}^{2}}{{\mathrm{\lambda }}^{5}}\cdot \dfrac{1}{\mathrm{exp}\left({h{c}}/{\mathrm{\lambda }{K}{T}}\right)-1}=\dfrac{{{C}}_{1}}{{\mathrm{\lambda }}^{5}}\cdot \dfrac{1}{\mathrm{exp}\left({{{C}}_{2}}/{\mathrm{\lambda }{T}}\right)-1} $$ (1)

      式中:h为普朗克常数,6.63×10−34 (J·S);K为玻耳兹曼常数,1.38×10−23JK;c为光速,3×108 m/s;C1C2分别为辐射常数,它们的值分别对应3.74×108 W·m−2·μm4和1.44 μm·K。

      图  1  探测器杜瓦封装结构

      Figure 1.  Detector Dewar package structure

      在某一波段[λ1, λ2]内,温度为T,发射率为ε的物体辐射度为:

      $$ {M}=\mathrm{\varepsilon }{\int }_{{\mathrm{\lambda }}_{1}}^{{\mathrm{\lambda }}_{2}}\dfrac{{{C}}_{1}}{{\mathrm{\lambda }}^{5}}\cdot \dfrac{1}{\mathrm{exp}\left({{{C}}_{2}}/{\mathrm{\lambda }{T}}\right)-1}\mathrm{d}\mathrm{\lambda } $$ (2)

      假设目标黑体在红外光学系统视场角2θ为7°范围为朗伯体,辐射亮度与辐射通量密度N关系为:

      $$ {L}={N}{\int }_{0}^{2\mathrm{\pi }}\mathrm{d}\mathrm{\phi }{\int }_{0}^{\theta}\mathrm{c}\mathrm{o}\mathrm{s}\theta \mathrm{s}\mathrm{i}\mathrm{n}\theta\mathrm{d}\theta =\mathrm{\pi }{N}{\mathrm{s}\mathrm{i}\mathrm{n}}^{2}{{θ} } $$ (3)

      假设红外光学系统透过率为τ,目标黑体在光学系统目标像面的照度为[14]

      $$ {E}=\frac{{\mathrm{\tau }}_{0}\mathrm{\pi }{L}}{4{{F}}^{2}} $$ (4)

      式中:F为光学系统F数。

      联立公式(1)~(4)求解,在工作波段分别为8~10.5、10.3~11.3、11.5~12.5 μm内,目标为300 K黑体在红外光学系统像面的照度值分别对应为2.42E-04 W/cm2、4.93E-05 W/cm2和3.23E-05 W/cm2

      在红外光学系统的众多表面中,能被探测器看到的表面称为关键面[15]。考虑系统的近场杂散光时,需要重点关注这一类表面。光学系统的4个光学镜头面、镜筒内表面、杜瓦窗口和窗口帽均在探测器视场中,它们的自身辐射通过光学系统以反射、折射和散射等方式均能到达探测器像面,如图2(a)所示,所以它们都是关键面。为了分析光学系统中关键面的辐射杂散光对探测器的影响,引入杂散比${N}{S}{R}={{N}}_{{s}}/{{N}}_{{i}}$来定量描述各元件杂散水平[16],其中Ns代表各元件到达光学系统探测器的杂散光能量,Ni代表300 K目标黑体通过光学系统到达光学系统探测器的辐射能量。结果统计见图2(b)。从图2(b)中可以观察到,光学系统中的关键面自身辐射造成的总杂散光能量远大于300 K黑体信号能量。并且在光学系统工作的3个波段中,4个关键面中的镜筒内表面的杂散比最大,占比都超过了60%。其中在8~10.5 μm波段下,其辐射造成的杂散占整个光学系统自身辐射比例达79%,占据光学系统自身杂散辐射主导地位,远远大于统计的其他3个元件的自身杂散辐射。因此,对光学系统的自身辐射尤其是镜筒辐射进行抑制处理是保证光学系统高质量成像的前提。

      图  2  (a)光学-机械模型;(b)关键面的辐射杂散比及百分比

      Figure 2.  (a) Opto-mechanical structure; (b) Radiated spurious ratio and percentage of critical surfaces

    • 由普朗克黑体辐射公式可知,光学系统中元件的背景辐射强度是温度和波长的函数,且与零件的表面发射率成正相关。减小红外杂散辐射的有效途径之一是降低辐射源强度。一个合适低温光机系统温度场设计可以大大降低仪器辐射造成的杂散光。然而,低温光机系统温度场设计受许多条件因素制约,比如制冷的功耗、制冷方式、组件重量和光机材料的热属性等。

      图3为杜瓦窗口和窗口帽低温设计采用的冷源为被动制冷,连接方式为冷链-热管-辐冷板安装,辐冷板通过辐射制冷将冷量由冷链传递至杜瓦窗口帽以及光学系统(镜筒、透镜等)中。杜瓦采用制冷机制冷,维持探测器低温工作环境。杜瓦制冷组件的窗口和窗口帽的低温设计存在一些难题:1)相对于低温杜瓦窗口和窗口帽的设计,制冷机与杜瓦连接处的膨胀机或脉管是热源,这将对杜瓦窗口帽和窗口低温光学设计的热平衡带来难题,且温度越低,问题越难解决;2)当低温杜瓦窗口和窗口帽温度进入深低温200 K时,会给对当前的制冷机设计和工艺带来的挑战。

      图  3  杜瓦在低温光学系统中光学示意图

      Figure 3.  Schematic diagram of Dewar in low temperature optical system

      图4所示为杜瓦窗口和窗口帽不同温度下的自身辐射在3个波段下的杂散比曲线。从图中可以看到,随着窗口和窗口帽温度的降低,辐射杂散比(NSR)逐渐减小。并且可以看到,温度在300~200 K时,随着温度的降低,杂散辐射比迅速下降,表明背景辐射得到较好的杂散抑制。而在温度低于200 K时,随着温度的降低,曲线的斜率趋于平缓,表明背景辐射相对于目标辐射已可忽略。

      图  4  辐射杂散比与温度关系曲线。(a)杜瓦窗口;(b)杜瓦窗口帽

      Figure 4.  Radiation spurious ratio versus temperature curve. (a) Dewar window; (b) Dewar window cap

      在折衷考量制冷资源情况下,窗口帽和窗口的温度控制在200 K。并且为了增加杜瓦制冷机耦合面和窗口帽之间的热阻,在杜瓦封装结构中引入0.1 mm壁厚的柔性波纹管外壳隔热结构的设计,如图1所示。该柔性波纹管通过减小热传链路截面积和增加传导链路径大大增加了其传导热阻,组件通过红外定标试验,实现了杜瓦组件200 K低温外壳与240 K的膨胀机或脉管的热学隔离。组件低温试验数据如表1所示,波纹管热端和冷端的温度梯度为37~48 K,显示出良好的隔热效果。柔性波纹管在低温条件下进行标定,漏热为101 mW (77 K)。

      表 1  制冷探测器杜瓦组件低温试验数据

      Table 1.  Low temperature test data of integrated detector Dewar assembly

      Cryocooler working
      condition
      Temperature of
      detector/K
      Dewar leakage
      heat/mW
      Temperature of
      cold end bellow/K
      Temperature of
      hot end bellows/K
      Insulation effect
      of bellow/K
      Cooler power
      consumption/W
      High temperature
      conditions (pluse 263 K,
      window cap 228 K)
      60762230.49267.7137.2252.08
      55776222.47263.440.9361.6
      60544215.52253.1637.6446.84
      Low temperature
      conditions (pulse 228 K,
      window cap 193 K)
      55557194.25242.3148.0656.52
      50575194.41241.0446.6365.72

      根据公式$\;{{{N}}}_{st}/{{{N}}}_{i}={{{N}}}_{{s}1}/{{{N}}}_{i}+{{{N}}}_{{s}2}/{{{N}}}_{i}+{{{N}}}_{{s}3}/{{{N}}}_{i}+{{{N}}}_{{s}4}/{{{N}}}_{i}$计算了光学透镜为195 K、镜筒为180 K、杜瓦窗口帽和杜瓦窗口保持在200 K时光机系统的杂散比,结果如表2所示,光机系统的内辐射杂散也抑制在一个较好的水平。

      表 2  关键面的辐射杂散比

      Table 2.  Radiated spurious ratios for critical surfaces

      Critical surface8-10.5/μm10.3-11.3/μm11.5-12.5/μm
      Lens cone0.067640.130110.19285
      Lens0.008620.042550.00418
      Dewar window0.021190.059740.09256
      Dewar window cap0.013910.038660.05213
      Total0.111360.271060.34172
    • 杜瓦窗口作为探测器与外界环境的光学接口,它不仅保护探测器的工作环境,也作为光学系统的一部分参与光学成像。一方面,窗口在工作过程中两侧存在压差,压差将导致窗口产生不规则形变。另一方面,由于杜瓦窗口在工作温度200 K时,窗口在径向和轴向将存在温差,而温差的存在也将导致窗口产生不规则形变。这两种不规则形变将导致窗口不再是平行平板,从而导致光线穿过窗口产生不可预期的变化。这将对探测器成像和杂散分析带来困难。窗口在承受压差情况下的窗口厚度$ {t}_{w} $与断裂应力$ {S}_{F} $的关系式为[17]

      $$ {t}_{w}={0.5{A}_{w}[{K}_{w}{f}_{s}{\Delta P}_{w}/{S}_{F}]}^{1/2} $$ (5)

      式中:$ {A}_{w} $为窗口口径;$ {K}_{w} $为支撑系数,收到夹持为0.75;$ {f}_{s} $为安全系数,一般为4;$ {\Delta P}_{w} $为窗口两侧的压差。由此可以看出,在满足力学强度下窗口厚度不小于7 mm。图5为在200 K低温载荷下的不同厚度下窗口中心变形情况。从图中可以看到,适量增大窗口厚度可以有效抑制温度梯度引起窗口变形,从而可以减小窗口形变带来的光程差[18-19]。然而窗口越厚,会导致进入探测器能量的损失。因此综合考虑窗口设计厚度为10 mm。

      图  5  不同厚度下窗口中心变形

      Figure 5.  Window center deformation under different thicknesses

      窗口尺寸一般由杜瓦前置光学系统设计决定。然而在工程中安装调配窗口时,窗口实际通光尺寸往往大于光学系统设计值,这样可以有效避免装配和窗口形变带来的误差。图6所示为不同窗口余量下的镜筒对探测器的辐射杂散比,镜筒温度为180 K。从图中可以看到,随着窗口余量的增加,11.5~12.5 μm内波段的杂散辐射比随之增加。然而对于8~10.5 μm和10.3~11.3 μm波段,随着窗口余量增加杂散辐射比随之略微波动,大体呈现稳定趋势。表明窗口余量对于8~10.5 μm和10.3~11.3 μm波段的杂散辐射比影响不大。因此,综合考虑在实际中,窗口余量应尽量小。因此在综合因素,采用的窗口余量为0.5 mm。

      图  6  不同波段下窗口余量的镜筒辐射杂散比

      Figure 6.  Radiation spurious ratio of lens barrel with window allowance under different waveband

    • 杜瓦封装结构中的冷屏作为探测器最后的光学接口,冷屏一般与光学系统的出瞳匹配,冷屏的结构对探测器的像面均匀性和杂散光都有着直接的影响。冷屏是以导热性高的镍钴材料通过电铸工艺加工完成的。为了抑制杂散信号,冷屏外表面采用抛光工艺以降低辐射,内表面采用低反射率涂层工艺以抑制杂散光。

      对冷屏内表面进行涂黑处理,也将导致冷屏内表面的黑体辐射率处于较大值。为了研究冷屏辐射对探测器杂散光的影响。测试了77 K液氮下冷屏的温度分布。图7为杜瓦液氮下的温度场。图中可以看到芯片测点C温度为78 K,冷屏上端B测点的温度在100 K左右。因此探测器工作温度在55 K时,冷屏的温度保持在100 K以下,因此冷屏对探测器的热辐射可以忽略不计。

      图  7  77 K液氮下杜瓦温度场分布

      Figure 7.  Dewar temperature field distribution under 77 K liquid nitrogen

      光学遥感相机杂散光抑制的设计理念一般有:1)在不降低光学系统的成像质量的情况下,对各路径的杂散光进行抑制,使其无法到达探测器像面;2)使像面照度均匀;3)杂散光抑制设计不增加相机体积。

      由前文分析可知,在该红外光学系统中,镜筒内表面的热辐射占据系统热辐射杂散光的主导地位。根据两个彼此面对(θs=θc=0)的光源和收集表面的能量传输公式$ {\varPhi }={L}{{A}}_{{c}}{{\varOmega }}_{{s}} $,其中L为光源辐亮度,Ac为收集面面积,Ωs为收集器对光源所成的立体角。在镜筒自身热辐射能量不变以及不影响成像光路的情况下,减小冷屏立体角可减小镜筒内表面辐射造成的杂散光影响。

      根据光学系统接口要求,同时也考虑到杜瓦安装精度要求,分别在距离探测器光敏面38.30 mm、33.30 mm、28.30 mm、23.30 mm和18.30 mm处设置冷屏,冷屏开孔尺寸分别对应为:37.80 mm×16.70 mm、34.88 mm×14.54 mm、31.94 mm×12.38 mm、29.02 mm×10.20 mm和26.08 mm×8.04 mm,并计算了立体角和探测器不均匀性,结果如图8所示。

      图8可以看出,在不影响成像光路的情况下,随着冷屏的升高,探测器对冷屏所成的立体角在逐渐减小,具体表现为,冷屏高度为18.30 mm时,探测器立体角平均值为0.445981 sr,冷屏高度38.3 mm时,探测器立体角平均值为0.356603 sr。根据能量传输公式,这表明到达探测器像面的仪器内辐射杂散光能量在减小。同时在图8(f)也可以观察到探测器像面不均匀性伴随着冷屏高度的增加逐渐减小。

      图  8  冷屏开口高度与探测器立体角分布:(a) 18.3 mm, (b) 23.3 mm,(c) 28.3 mm,(d) 33.3 mm, (e) 38.3 mm,(f)探测器不均匀性、平均立体角与冷屏高度的函数关系

      Figure 8.  Cold shield opening height and detector solid angle distribution: (a) 18.3 mm, (b) 23.3 mm, (c) 28.3 mm, (d) 33.3 mm, (e) 38.3 mm, (f) Detector inhomogeneity, average solid angle as a function of cold screen height

      为了进一步研究冷屏尺寸对镜筒内表面辐射杂散光的影响,仿真分析了不同尺寸的冷屏下镜筒内表面辐射杂散比的关系曲线,结果如图9所示,镜筒内表面温度为180 K。从图中可以看到,与前面讨论的结果一致的是:随着冷屏的高度的增加,镜筒的杂散比在逐渐减小。

      图  9  不同冷屏高度下的镜筒辐射杂散比

      Figure 9.  Spurious ratio of lens barrel radiation under different cold screen heights

      因此,可以得出结论,在不影响成像光路的情况下,在设计冷屏时,冷屏开孔应距离探测器像面越远越好。

    • 冷屏挡板能在不改变光学系统结构的前提下有效抵挡杂散光进入探测器,其设计的目标是遮挡主挡板内壁上所有的一阶杂散光路,但同时又不能遮挡探测器的视场。图10所示为一种叶片设计,这种挡板设计的工作原理是防止收集器看到主挡板内壁既为关键面又为照明面。

      图  10  针对冷屏漫发射冷屏挡板设计

      Figure 10.  Design of cold screen baffle for cold screen diffuse emission

      根据图10的挡板叶片设计,θ1的大小将直接影响到冷屏挡板叶条的尺寸、位置和数量。随着θ1角度增加,挡板叶条的数量将减小。为了研究θ1的角度设计对杂散光抑制设计影响。根据图10的挡板设计了θ1角度分别为θ2、90°和180°−θ2的冷屏,其中θ2为边缘成像光线与水平的夹角。对应的冷屏挡板叶条数量分别为4、3和2。利用点源透过率(PST)来评价冷屏抑制杂散光能力,得到的结果如图11所示。

      图  11  冷屏的PST

      Figure 11.  PST of cold screen

      图11为3个角度下设计的冷屏PST。由图中可以看到,在入射光线大于20°时,3种冷屏的PST相差不大,这表明3种冷屏设计的抑制杂散光能力相差不大。同时也注意到,0°~20°范围内,随着θ1角度的增加,冷屏PST越大,这可能是由于冷屏挡叶条数量的减小,冷屏对于二阶以上的杂散射光路的抑制能力略有减弱。进一步计算了3种冷屏设计对来自光机系统主要辐射源镜筒表面辐射杂散光的抑制能力。随着冷屏的挡板叶片数增加,来自镜筒的杂散比略有减小,减小幅度值为5%左右。

      上文分析过程是忽略了叶片边缘处的散射。一般来说,挡板叶片数不应过多,否则会造成叶片边缘散射的光通量比没有叶片时主挡板内径散射的光通量还要多[15]。挡叶板片数越多,一方面对其加工难度和精度越高,另一方面,为了对8~12.5 μm 的波长范围进行三波段分光和防止波段间的光学串扰,采用集成式滤光片设计。而为了控制滤光片的加工和对中精度,采用滤光片支架与冷屏分离方式。如果冷屏挡叶板数量越多,冷屏对滤光片的对中偏差也越大,容易造成光学渐晕和视场外的杂散光。在冷屏抑制杂散光能力相差不大的情况下,在项目中考虑3片挡叶板设计。

    • 在红外相机中,杂散辐射不但会对探测器像面非均匀性产生影响,而且也是限制相机灵敏度的一个重要因素。因此合理的杂散设计可以有效降低杂散光对像面的非均匀性的影响,也会提高相机的灵敏度。表3显示的组件探测器主要性能指标。从表中可以看到探测器良好的探测性能,探测器的响应性、像面不均匀性和暗电流均控制在良好的水平,图12为卫星热红外成像仪在轨工作时对上海浦东机场图像融合后形成的长波彩色图,成像效果良好,显示良好的杂散抑制效果。

      表 3  组件主要性能指标

      Table 3.  Main performance indicators

      Wave band11.5-12.5 μm8-10.5 μm10.3-11.3 μm
      Response inhomogeneity<10%
      Dark current/nA≤5
      Peak detectivity/
      cm·Hz1/2·W−1
      5.27E103.12E106.66E10
      Responivity/V·W−16.03E61.05E79.07E6
      Total NSR0.340.110.27

      图  12  在轨成像彩图

      Figure 12.  Color map of on-orbit imaging

    • 以宽幅高分辨率红外系统的光机结构作为输入边界,对光机自身辐射的关键面进行杂散分析。同时,讨论了杜瓦光窗低温设计对杂散光的影响。针对主要杂散辐射源,分析了窗口和冷屏设计的影响。结果表明合理的低温设计有利于抑制组件的杂散辐射。0.1 mm壁厚的柔性波纹管外壳隔热结构是实现200 K的低温窗口和窗口帽设计的有效手段,波纹管热端和冷端的温度梯度保持在37~48 K。镜筒作为光机主要杂散辐射的来源,在杜瓦的窗口和冷屏设计时应综合考虑加工和装配对镜筒杂散光的影响。

参考文献 (19)

目录

    /

    返回文章
    返回