留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率涡旋拉曼光纤激光器

李阳 范晨晨 郝修路 马小雅 姚天甫 许将明 曾祥龙 周朴

李阳, 范晨晨, 郝修路, 马小雅, 姚天甫, 许将明, 曾祥龙, 周朴. 高功率涡旋拉曼光纤激光器[J]. 红外与激光工程, 2023, 52(6): 20230292. doi: 10.3788/IRLA20230292
引用本文: 李阳, 范晨晨, 郝修路, 马小雅, 姚天甫, 许将明, 曾祥龙, 周朴. 高功率涡旋拉曼光纤激光器[J]. 红外与激光工程, 2023, 52(6): 20230292. doi: 10.3788/IRLA20230292
Li Yang, Fan Chenchen, Hao Xiulu, Ma Xiaoya, Yao Tianfu, Xu Jiangming, Zeng Xianglong, Zhou Pu. High-power vortex Raman fiber laser[J]. Infrared and Laser Engineering, 2023, 52(6): 20230292. doi: 10.3788/IRLA20230292
Citation: Li Yang, Fan Chenchen, Hao Xiulu, Ma Xiaoya, Yao Tianfu, Xu Jiangming, Zeng Xianglong, Zhou Pu. High-power vortex Raman fiber laser[J]. Infrared and Laser Engineering, 2023, 52(6): 20230292. doi: 10.3788/IRLA20230292

高功率涡旋拉曼光纤激光器

doi: 10.3788/IRLA20230292
基金项目: 国家自然科学基金(12174445, 62061136013)
详细信息
    作者简介:

    李阳,女,博士生,主要从事光场调控方面的研究

    周朴,男,研究员,博士,主要从事光纤激光、光束合成以及相关交叉科学等方面的研究

    通讯作者: 姚天甫,女,副研究员,博士,主要从事拉曼光纤激光及光场调控方面的研究
  • 中图分类号: TN248

High-power vortex Raman fiber laser

Funds: National Natural Science Foundation of China (12174445, 62061136013)
  • 摘要: 近年来,携带轨道角动量的涡旋光束在激光加工、光学微粒操纵、超分辨成像、大容量光通信等领域应用广泛,目前已在稀土掺杂光纤激光器中得到了广泛研究。基于声致光纤光栅,实验搭建了全光纤结构拉曼光纤激光器,实现LP01模与LP11模的有效调控,并进一步通过偏振控制实现环形径向偏振光和拓扑荷数l=±1的涡旋光束输出,最高输出功率~70 W,中心波长为1134 nm。文中提出的激光器有利于拓宽涡旋光束输出波段,在多维光通信、光场和物质相互作用等领域具备较大研究价值和应用潜力。
  • 图  1  基于声致光纤光栅的涡旋拉曼光纤振荡器结构示意图

    Figure  1.  Schematic diagram of vortex Raman fiber oscillator based on acoustically-induced fiber grating (AIFG)

    图  2  (a)加载不同频率信号时LP01模透射谱;(b)特征频率与波长拟合曲线

    Figure  2.  (a) Transmission spectrum of LP01 mode at different loaded frequencies; (b) Fitted curve between the electrical frequency and wavelength

    图  3  (a)信号光功率随泵浦光功率变化和对应光斑; (b)最高功率下的光谱

    Figure  3.  (a) Output signal power as a function of pump power and beam spots at corresponding power; (b) Spectrum at the maximum output power

    图  4  (a)原始光强分布;(b1)~(b4)经过线偏振片后的光强分布,其中红色箭头表示偏振方向;(c)、(d)光斑自干涉条纹

    Figure  4.  (a) Original light intensity distribution; (b1)-(b4) Beam profiles after the linear polarizer, where the red arrows refer to the polarization direction; (c), (d) Self-interference patterns

  • [1] Zhang J, Lin Z, Liu J, et al. SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre [J]. Nanophotonics, 2021, 11(4): 873-884.
    [2] Shi Y, Blackman D R, Zhu P, et al. Electron pulse train accelerated by a linearly polarized Laguerre–Gaussian laser beam [J]. High Power Laser Science and Engineering, 2022, 10: e45. doi:  10.1017/hpl.2022.37
    [3] Yang Y, Ren Y, Chen M, et al. Optical trapping with structured light: A review [J]. Advanced Photonics, 2021, 3(3): 034001.
    [4] Willig K I, Keller J, Bossi M. STED microscopy resolves nanoparticle assemblies [J]. New Journal of Physics, 2006, 8(6): 106. doi:  10.1088/1367-2630/8/6/106
    [5] 吕浩然, 白毅华, 叶紫微, 等. 利用超表面的涡旋光束产生进展(特邀)[J]. 红外与激光工程, 2021, 50(9): 62-77. doi:  10.3788/IRLA20210283

    Lv H, Bai Y, Ye Z, et al. Generation of optical vortex beams via metasurfaces(invited) [J]. Infrared and Laser Engineering, 2021, 50(9): 20210283. (in Chinese) doi:  10.3788/IRLA20210283
    [6] 马文琪, 路慧敏, 王建萍, 等. 基于空间光调制器和深度学习的涡旋光束产生[J]. 光学学报, 2021, 41(11): 79-85. doi:  10.3788/AOS202141.1107001

    Ma W, Lu H, Wang J, et al. Vortex beam generation based on spatial light modulator and deep learning [J]. Acta Optica Sinica, 2021, 41(11): 1107001. (in Chinese) doi:  10.3788/AOS202141.1107001
    [7] Fridman M, Nixon M, Dubinskiy M, et al. Fiber amplification of radially and azimuthally polarized laser light [J]. Physics, 2010, 35(1): 1332-1334.
    [8] Gregg P, Mirhosseini M, Rubano A, et al. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber [J]. Optics Letters, 2015, 40(8): 1729-1732. doi:  10.1364/OL.40.001729
    [9] Ma X, Ye J, Zhang Y, et al. Vortex random fiber laser with controllable orbital angular momentum mode [J]. Photonics Research, 2021, 9(2): 266-271. doi:  10.1364/PRJ.413455
    [10] Sun B, Wang A, Xu L, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating [J]. Optics Letters, 2012, 37(4): 464-466. doi:  10.1364/OL.37.000464
    [11] Zhao Y, Wang T, Mou C, et al. All-fiber vortex laser generated with few-mode long-period gratings [J]. IEEE Photonics Technology Letters, 2018, 30(8): 752-755. doi:  10.1109/LPT.2018.2815041
    [12] Lu Y, Liu W, Chen Z, et al. Spatial mode control based on photonic lanterns [J]. Optics Express, 2021, 29(25): 41788-41797. doi:  10.1364/OE.440326
    [13] Wang T, Wang F, Shi F, et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler [J]. Journal of Lightwave Technology, 2017, 35(11): 2161-2166. doi:  10.1109/JLT.2017.2676241
    [14] Wu H, Xu J, Huang L, et al. High-power fiber laser with real-time mode switchability [J]. Chinese Optics Letters, 2022, 20(2): 021402. doi:  10.3788/COL202220.021402
    [15] Lu J, Shi F, Meng L, et al. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser [J]. Photonics Research, 2020, 8(7): 1203-1212. doi:  10.1364/PRJ.386954
    [16] Zhang W, Wei K, Huang L, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating [J]. Optics Express, 2016, 24(17): 19278-19285. doi:  10.1364/OE.24.019278
    [17] Zhang W, Huang L, Wei K, et al. High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion [J]. Optics Letters, 2016, 41(21): 5082-5085. doi:  10.1364/OL.41.005082
    [18] Zhao X, Liu Y, Liu Z, et al. Wavelength tunable OAM mode converters based on chiral long-period gratings [J]. IEEE Photonics Technology Letters, 2020, 32(24): 1519-1522. doi:  10.1109/LPT.2020.3038284
    [19] Hu H, Chen Z, Cao Qian, et al. Wavelength-tunable and OAM-switchable ultrafast fiber laser enabled by intracavity polarization control [J]. IEEE Photonics Journal, 2023, 15(1): 1-4.
    [20] Gui L, Wang C, Ding F, et al. 60 nm span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces [J]. ACS Photonics, 2023, 10(3): 623-631. doi:  10.1021/acsphotonics.2c01625
    [21] 周朴, 姚天甫, 范晨晨, 等. 拉曼光纤激光: 50年的历程、现状与趋势(特邀)[J]. 红外与激光工程, 2022, 51(1): 20220015. doi:  10.3788/IRLA20220015

    Zhou P, Yao T, Fan C, et al. 50th anniversary of Raman fiber laser: History, progress and prospect (Invited) [J]. Infrared and Laser Engineering, 2022, 51(1): 20220015. (in Chinese) doi:  10.3788/IRLA20220015
    [22] Terry N B, Alley T G, Russell T H. An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers [J]. Optics Express, 2007, 15(26): 17509-17519. doi:  10.1364/OE.15.017509
    [23] Blake J N, Kim B Y, Engan H E, et al. Analysis of intermodal coupling in a two-mode fiber with periodic microbends [J]. Optics Letters, 1987, 12(4): 281-283. doi:  10.1364/OL.12.000281
    [24] Vengsarkar A M, Pedrazzani J R, Judkins J B, et al. Long-period fiber-grating-based gain equalizers [J]. Optics Letters, 1996, 21(5): 336-338. doi:  10.1364/OL.21.000336
    [25] Lan B, Liu C, Rui D, et al. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry [J]. Physica Scripta, 2019, 94: 055502. doi:  10.1088/1402-4896/ab03a2
  • [1] 赵丽娟, 吴雨静, 徐志钮.  高阶轨道角动量传输光纤设计及传输特性研究(内封底文章) . 红外与激光工程, 2024, 53(3): 20240007-1-20240007-13. doi: 10.3788/IRLA20240007
    [2] 郑伟, 张迪, 原昊, 于娜娜, 席思星, 王桂林, 马帅, 王晓雷, 郞利影.  基于轨道角动量全息和频移的大容量光学信息加密技术 . 红外与激光工程, 2023, 52(7): 20230313-1-20230313-9. doi: 10.3788/IRLA20230313
    [3] 王佳琦, 付时尧, 李浪, 郭盈池, 李晨, 高春清.  采用深度学习校正畸变涡旋光束的方法综述(特邀) . 红外与激光工程, 2022, 51(7): 20220221-1-20220221-11. doi: 10.3788/IRLA20220221
    [4] 任元, 吴昊, 王琛, 刘政良, 刘通, 熊振宇.  量子涡旋陀螺若干关键参数的仿真计算(特邀) . 红外与激光工程, 2022, 51(4): 20220004-1-20220004-10. doi: 10.3788/IRLA20220004
    [5] 闫丽凝, 吕宏, 贺蕊, 庞令阳, 孔妍.  矢量涡旋光束经光阑-透镜系统的OAM与偏振特性 . 红外与激光工程, 2022, 51(12): 20220250-1-20220250-9. doi: 10.3788/IRLA20220250
    [6] 王花花, 马健, 杨智新, 杜浩然, 高禄, 张泽.  热光非定域螺旋相衬成像(特邀) . 红外与激光工程, 2021, 50(9): 20210450-1-20210450-7. doi: 10.3788/IRLA20210450
    [7] 于策, 王天枢, 张莹, 林鹏, 郑崇辉, 马万卓.  大气湍流信道中OAM光束与高斯光束传输性能的实验研究 . 红外与激光工程, 2021, 50(8): 20200400-1-20200400-10. doi: 10.3788/IRLA20200400
    [8] 王琛, 任元, 吴昊, 邱松.  涡旋光束制备及其在惯性测量领域的研究进展(特邀) . 红外与激光工程, 2021, 50(9): 20200463-1-20200463-15. doi: 10.3788/IRLA20200463
    [9] 詹海潮, 王乐, 彭秦, 王文鼐, 赵生妹.  涡旋光束的自适应光学波前校正技术研究进展(特邀) . 红外与激光工程, 2021, 50(9): 20210428-1-20210428-10. doi: 10.3788/IRLA20210428
    [10] 吕浩然, 白毅华, 叶紫微, 董淼, 杨元杰.  利用超表面的涡旋光束产生进展(特邀) . 红外与激光工程, 2021, 50(9): 20210283-1-20210283-16. doi: 10.3788/IRLA20210283
    [11] 付时尧, 黄磊, 吕燕来, 高春清.  光束轨道角动量谱的测量技术研究进展(特邀) . 红外与激光工程, 2021, 50(9): 20210145-1-20210145-15. doi: 10.3788/IRLA20210145
    [12] 汪莎, 张志成, 邓国亮, 周寿桓.  直接输出的超短脉冲轨道角动量涡旋光产生技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201061-1-20201061-11. doi: 10.3788/IRLA20201061
    [13] 白秀丽, 陈鹤鸣, 张凌菲.  轨道角动量模传输的圆环形光子晶体光纤 . 红外与激光工程, 2019, 48(2): 222002-0222002(8). doi: 10.3788/IRLA201948.0222002
    [14] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [15] 柯熙政, 宁川, 王姣.  大气湍流下轨道角动量复用态串扰分析 . 红外与激光工程, 2018, 47(11): 1122002-1122002(7). doi: 10.3788/IRLA201847.1122002
    [16] 柯熙政, 薛璞.  轨道角动量叠加态的产生及其检验 . 红外与激光工程, 2018, 47(4): 417007-0417007(6). doi: 10.3788/IRLA201847.0417007
    [17] 步敬, 张莉超, 豆秀婕, 杨勇, 张聿全, 闵长俊.  任意拓扑荷光学旋涡的产生及应用 . 红外与激光工程, 2017, 46(6): 634001-0634001(5). doi: 10.3788/IRLA201746.0634001
    [18] 高春清, 张世坤, 付时尧, 胡新奇.  涡旋光束的自适应光学波前校正技术 . 红外与激光工程, 2017, 46(2): 201001-0201001(6). doi: 10.3788/IRLA201746.0201001
    [19] 柯熙政, 郭新龙.  大气斜程传输中高阶贝塞尔高斯光束轨道角动量的研究 . 红外与激光工程, 2015, 44(12): 3744-3749.
    [20] 朱艳英, 姚文颖, 李云涛, 魏勇, 王锁明.  计算全息法产生涡旋光束的实验 . 红外与激光工程, 2014, 43(12): 3907-3911.
  • 加载中
图(4)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  77
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-25
  • 修回日期:  2023-05-20
  • 刊出日期:  2023-06-25

高功率涡旋拉曼光纤激光器

doi: 10.3788/IRLA20230292
    作者简介:

    李阳,女,博士生,主要从事光场调控方面的研究

    周朴,男,研究员,博士,主要从事光纤激光、光束合成以及相关交叉科学等方面的研究

    通讯作者: 姚天甫,女,副研究员,博士,主要从事拉曼光纤激光及光场调控方面的研究
基金项目:  国家自然科学基金(12174445, 62061136013)
  • 中图分类号: TN248

摘要: 近年来,携带轨道角动量的涡旋光束在激光加工、光学微粒操纵、超分辨成像、大容量光通信等领域应用广泛,目前已在稀土掺杂光纤激光器中得到了广泛研究。基于声致光纤光栅,实验搭建了全光纤结构拉曼光纤激光器,实现LP01模与LP11模的有效调控,并进一步通过偏振控制实现环形径向偏振光和拓扑荷数l=±1的涡旋光束输出,最高输出功率~70 W,中心波长为1134 nm。文中提出的激光器有利于拓宽涡旋光束输出波段,在多维光通信、光场和物质相互作用等领域具备较大研究价值和应用潜力。

English Abstract

    • 近年来,涡旋光束由于在光通信[1]、粒子加速[2]、微粒操控[3]、超分辨成像[4]等领域具有重要研究价值和应用前景而备受关注。涡旋光束具有螺旋相位波前,同时每个光子携带轨道角动量(Orbital angular momentum, OAM),光强呈环形中空分布。目前,产生涡旋光场的方式主要分为两类:一类是是空间结构产生,例如通过超表面[5]、空间光调制器[6]、螺旋相位板[7]、q-波片[8]等。自由空间中能产生的涡旋光场类型较多,例如通过空间光调制器,可以产生拓扑荷数l>50的涡旋光[9]。但是空间结构不利于集成,且功率水平较为受限。另一类是光纤中产生,光纤具有波导模式稳定性,且光纤激光器具有结构紧凑,热管理方便,效率高等优点,利于实现高功率高稳定性涡旋光束输出。目前,全光纤激光器中实现涡旋光束主要利用少模光纤光栅[10]、长周期光纤光栅[11]、光子灯笼[12]、模式选择耦合器[13]、声致光纤光栅(Acoustically-induced fiber grating, AIFG)[14-17]等器件。其中,声致光纤光栅由于具有结构简单、波长调谐范围宽、响应速度快、插入损耗低等优点,在连续光激光器和超快锁模激光器中均得到广泛应用。例如,国防科技大学的吴函烁等人利用AIFG结合主振功率放大方案,实现了掺镱激光器中LP11模的百瓦级放大,通过调控加载信号频率,实现模式切换,切换时间<1 ms[14]。进一步,结合偏振控制技术,上海大学利用AIFG实现了锁模激光器中的涡旋脉冲切换,并利用色散傅里叶变换首次观测了涡旋切换在锁模过程中的动力学演化过程[15]。西北工业大学基于AIFG在1.5 μm波段[16]和绿光激光器[17]中均实现了拓扑荷数l=±1的轨道角动量光束输出。

      随着大数据、云计算、物联网等技术的高速发展,拓展通信系统的信息容量刻不容缓。涡旋光束由于具备无限正交特性,可以大大提高通信系统容量。2022年,中山大学通过特殊设计的七芯光纤,每个纤芯支持8个OAM模式,每个模式携带10个波长,已经实验验证了其具备在60 km范围内传播56个OAM模式通道的能力[1]。而空分、模分、波分复用技术的结合,亟需拓展涡旋光场的波长范围,且特殊波段的涡旋光场还可以为研究光场与物质相互作用提供新的视角。Zhao等人通过调节施加在手性长周期光纤光栅上的扭转力,在1.5 μm波段实现l = 1~3的涡旋光束输出,波长调谐范围约20 nm[18]。上海理工大学采用涡旋波片和衍射光栅,实现了1015~1038 nm波长的l = ±1涡旋脉冲输出[19]。近期,北京邮电大学提出了一种等离激元超构表面辅助的波长可调谐 l = ±1 OAM光束激光器,波长调谐范围1015~1075 nm[20],输出功率约5 mW,激光器效率低于10%。在光纤激光器中,目前涡旋光束主要在掺镱、掺铒、掺铥等稀土离子发射波段产生,而在其他波段增益较小,拉曼激光技术为填补波长空白提供了新的思路。利用无源光纤中13.2 THz拉曼频移,理论上只要有合适的泵浦源,就可以实现任意波长的激光输出[21]。将声致光纤光栅应用于拉曼光纤激光器,通过拉曼频移转换输出波长,无需对模式转换器件参数进行重新设计和替换,具有结构简单、无光子暗化、效率高等优点。

      文中报道了基于声致光纤光栅,在全光纤拉曼激光器中实现矢量偏振光束和拓扑荷数l=±1的涡旋光束输出,输出激光中心波长为1134.72 nm,功率约70 W。该实验不仅验证了声致光纤光栅超宽的模式转换特性,有利于进一步丰富拓宽涡旋光束的应用,也为全光纤高功率超宽波长可调谐涡旋光输出提供了新的思路。

    • 搭建如图1所示的拉曼光纤振荡器。输出波长为1080 nm的掺镱光纤激光器作为泵浦源。反射率大于99.5%的高反射率光纤布拉格光栅(High-reflective fiber Bragg grating, HR FBG)和反射率为19%的低反射率光栅(Low-reflective fiber Bragg grating, LR FBG)构成振荡器的谐振腔。拉曼增益光纤为200 m长的渐变折射率(Graded-index, GRIN)光纤,其纤芯直径为20 μm,数值孔径NA为0.14,折射率分布呈抛物线型。为了减少光纤熔接处的模场失配,HR FBG与LR FBG采用同种拉曼增益光纤刻写。拉曼光纤振荡器的输出模式为基模,渐变折射率光纤的光束净化效应保证了输出基模的纯度[22]。AIFG作为模式调控器件,熔接在低反光栅之后,可以将基模转换为LP11模输出,其所使用的光纤为少模阶跃折射率光纤,纤芯直径16 μm,数值孔径NA为0.11,在1080 nm和1130 nm处支持4种LP模式,分别为LP01、LP11、LP21和LP02模。为了控制输出模场偏振态,在AIFG后连接三环式偏振控制器(Polarization controller, PC),其所用光纤与AIFG光纤相同。LP11模式由4个矢量模式简并而成,通过旋转PC,可以调整LP11模中矢量模式的耦合过程,使所有的矢量模式都高效地耦合到某一特定矢量模或者产生特定相位差。为避免光纤端面反馈,激光通过镀有增透膜的光纤端帽(Endcap)输出,其在1130 nm波长的透过率大于99.9%。

      图  1  基于声致光纤光栅的涡旋拉曼光纤振荡器结构示意图

      Figure 1.  Schematic diagram of vortex Raman fiber oscillator based on acoustically-induced fiber grating (AIFG)

      涡旋光束可以由LP11模中的简并矢量模叠加产生,产生涡旋光束可以基于对LP11的偏振选择。AIFG是产生LP11模式的关键器件,其基本结构如图1绿色虚线框内所示,由压电陶瓷(Piezoelectric transducer, PZT)、射频(Radio frequency, RF)信号源和少模光纤(Few-mode fiber, FMF)构成。在实验中,射频信号源包含信号发生器和电压放大器两部分,其中信号发生器先产生特定频率(约数百kHz)的正弦信号,再由电压放大器将此信号放大50倍。放大后的信号加载至压电陶瓷,压电陶瓷将以与所施加信号相同的频率振动产生声波并传输至剥去涂覆层的少模光纤中。周期性的声致振动将在光纤中传播,最终形成类似于长周期光纤光栅的折射率调制机制,光栅周期为$ \varLambda \text{=}\sqrt{(\pi R{C}_{ext}/f)} $[23],其中R是少模光纤的包层半径,Cext =5760 m/s为声波在石英光纤中的传播速度,f为加载电信号的频率。根据模式耦合理论,LP01模和LP11模在满足模式耦合条件$ \varLambda = {L_B} = \lambda /({n_{01}} - {n_{11}}) $[24]时可以发生耦合。其中λ为传输激光波长,n01n11分别为LP01模和LP11模的有效折射率。为了测试AIFG加载信号频率与波长对应关系,基于弯曲损耗高阶模的原理,利用宽带光源测试AIFG的基模透射谱,如图2(a)所示。通过改变加载信号频率和电压,从1050~1150 nm波段透射谱可达到12~16 dB,意味着从LP01~LP11模的转换具有较高的转换效率,其中在1134 nm处达到16 dB (97%),对应频率和电压分别为787 kHz和68.5 V。如图2(b)所示,射频信号频率与波长呈线性关系,其斜率约为1.2 nm/kHz。

      图  2  (a)加载不同频率信号时LP01模透射谱;(b)特征频率与波长拟合曲线

      Figure 2.  (a) Transmission spectrum of LP01 mode at different loaded frequencies; (b) Fitted curve between the electrical frequency and wavelength

    • 输出信号光功率随泵浦光功率的变化曲线图如图3(a)所示,其中黑色、红色曲线分别表示输出模式为LP01模和LP11模。当泵浦功率达到拉曼阈值后,信号光功率迅速增加,其中LP01模最高输出功率为70.8 W,斜率效率为92.4%,LP11模最高输出功率为69.6 W,斜率效率为90.6%,此时总光光效率83%。当泵浦功率高于65 W后,开始产生二阶拉曼光,其波长与激光器谐振波长不一致,导致斜率效率下降。曲线两侧展示了在不同功率水平时两种模式的光斑,分别为典型的LP01模和LP11模强度分布。输出LP11模功率略低于LP01模,是由于AIFG工作时引入额外损耗。由于AIFG在激光器输出端调控模式,两个模式输出光谱无明显差别。最高功率时输出光谱如图3(b)所示,输出信号光中心波长为1134.72 nm,中心波长为1194.16 nm的二阶拉曼光限制了进一步功率提升。但在最高功率时,信号光仍高于二阶拉曼光29 dB,高于泵浦光26 dB,信号光光谱纯度达到99.72%。

      图  3  (a)信号光功率随泵浦光功率变化和对应光斑; (b)最高功率下的光谱

      Figure 3.  (a) Output signal power as a function of pump power and beam spots at corresponding power; (b) Spectrum at the maximum output power

      进一步,通过调整PC调节矢量模式耦合过程,可以使所有模式都高效地耦合到TM01模,得到径向偏振光输出。如图4(a)所示,为原始光强分布,通过旋转线偏振片检测输出光束的模场分布,经过偏振片后的光斑如图4(b1)~(b4)所示,其中红色箭头表示偏振方向,随着偏振方向旋转,光斑的两瓣随之旋转并总是平行于偏振方向,可以确定产生了径向偏振TM01模式。进一步,当偏振控制器使得光纤中的矢量模式产生π/2相位差时,可以叠加产生涡旋光束,搭建迈克尔逊干涉仪,通过光斑自干涉法[25],使涡旋光与具有一定横向位移的自身光斑干涉,可以检测到两个相反方向的“Y”形干涉条纹,如图4(c)和4(d)所示,其中插图为环形横向模场分布,在相同的干涉仪测量条件下,得到两个对应“Y”形开口恰好相反的干涉图样,证明产生了拓扑荷数为l=±1的OAM光束。

      图  4  (a)原始光强分布;(b1)~(b4)经过线偏振片后的光强分布,其中红色箭头表示偏振方向;(c)、(d)光斑自干涉条纹

      Figure 4.  (a) Original light intensity distribution; (b1)-(b4) Beam profiles after the linear polarizer, where the red arrows refer to the polarization direction; (c), (d) Self-interference patterns

    • 文中基于声致光纤光栅在拉曼光纤激光器中实现了径向偏振光和拓扑荷数l=±1的涡旋光束输出,具有结构紧凑、波长调谐范围宽、响应速度快、插入损耗低等优点。输出中心波长1134.72 nm,光谱纯度99.72%,功率~70 W,效率83%。作为全光纤模式转换器件,声致光纤光栅超宽的波长调谐能力和高功率承受能力,有望使其成为填补涡旋光束光谱空白的关键器件,为特殊波段涡旋光束应用探索提供可靠的光源。通过更换泵浦源、增益光纤和级联拉曼频移,可以将波长覆盖范围进一步扩大,为大功率特殊波段涡旋光束提供可靠的种子源,并有望为大容量光通信系统提供光源。

参考文献 (25)

目录

    /

    返回文章
    返回