[1] Loewen E G, Popov E. Diffraction gGatings and Applications (Optical Science and Engineering)[M]. New York: CRC Press, 1997.
[2] Koenderink A F, Alu A, Polman A. Nanophotonics: shrinking light-based technology [J]. Science, 2015, 348(6234): 516-521. doi:  10.1126/science.1261243
[3] Collin S. Nanostructure arrays in free-space: optical properties and applications [J]. Reports on Progress in Physics, 2014, 77(12): 126402. doi:  10.1088/0034-4885/77/12/126402
[4] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
[5] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials [J]. Nature Photonics, 2007, 1(4): 224. doi:  10.1038/nphoton.2007.28
[6] Yu N, Capasso F. Flat optics with designer metasurfaces [J]. Nature Materials, 2014, 13(2): 139-150.
[7] Ra’di Y, Sounas D L, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control [J]. Physical Review Letters, 2017, 119(6): 067404. doi:  10.1103/PhysRevLett.119.067404
[8] Bonod N, Jérôme N. Diffraction gratings: from principles to applications in high-intensity lasers [J]. Advanced Optics Photonics, 2016, 8(1): 156-199. doi:  10.1364/AOP.8.000156
[9] Neviere M, Popov E. Light Propagation in Periodic Media: Differential Theory and Design[M]. Boca Raton: CRC Press, 2002.
[10] Quaranta G, Basset G, Martin O J F, et al. Recent advances in resonant waveguide gratings [J]. Laser & Photonics Review, 2018, 12(9): 1800017.1-1800017.31.
[11] Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters [J]. Applied Optics, 1993, 32(14): 2606-2613. doi:  10.1364/AO.32.002606
[12] Magnusson R, Wang S S. New principle for optical filters [J]. Applied Physical Letters, 1992, 61(9): 1022-1024. doi:  10.1063/1.107703
[13] Chang-Hasnain C J. High-contrast gratings as a new platform for integrated optoelectronics [J]. Semiconductor Science & Technology, 2010, 26(26): 014043.
[14] Zhu Li, Yang Weijian, ChangHasnain C J. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber [J]. Optics Exp, 2017, 25(15): 18462-18473. doi:  10.1364/OE.25.018462
[15] Karagodsky V, Sedgwick F G, ChangHasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors [J]. Optics Express, 2010, 18(16): 16973-16988. doi:  10.1364/OE.18.016973
[16] Chang-Hasnain C J, Yang W. High-contrast gratings for integrated optoelectronics [J]. Advances in Optics & Photonics, 2012, 4(3): 379-440.
[17] Popov V, Boust F, Burokur S N, et al. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom [J]. Physical Review Applied, 2019, 11(2).
[18] Ra’di, Y, Alù A. Reconfigurable metagratings [J]. ACS Photonics, 2018, 5(5): 1779-1785. doi:  10.1021/acsphotonics.7b01528
[19] Fan Z, Shcherbakov M R, Allen M, et al. Perfect diffraction with multiresonant bianisotropic metagratings [J]. ACS Photonics, 2018, 5(11): 4303-4311. doi:  10.1021/acsphotonics.8b00434
[20] Deng Zilan, Cao Yaoyu, Li Xiangping, et al. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure: publisher's note [J]. Photonics Research, 2018, 6(7): 6.
[21] Sell D, Yang J, Doshay S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries [J]. Nano Letters, 2017, 17(6): 3752-3757. doi:  10.1021/acs.nanolett.7b01082
[22] Sell D, Yang J, Wang E W, et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces [J]. ACS Photonics, 2018, 5(6): 2402-2407. doi:  10.1021/acsphotonics.8b00183
[23] Khaidarov E, Hao H, Paniaguadominguez R, et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending [J]. Nano Letters, 2017, 17(10): 6267-6272. doi:  10.1021/acs.nanolett.7b02952
[24] Deng ZiLan, Deng Junhong, Zhuang Xin, et al. Facile metagrating holograms with broadband and extreme angle tolerance [J]. Light: Science & Applications, 2018, 7(1): 78.
[25] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]//European Conference on Antennas and Propagation, 2018.
[26] Fu Yangyang, Shen Chen, Cao Yanyan, et al. Reversal of transmission and reflection based on acoustic metagratings with integer parity design [J]. Nature Communications, 2019, 10(1): 2326-2332. doi:  10.1038/s41467-019-10377-9
[27] Shi Tan, Wang Yujie, Deng Zilan, et al. All‐dielectric kissing-dimer metagratings for asymmetric high diffraction [J]. Advanced Optical Materials, 2019, 7(24): 1901389. doi:  10.1002/adom.201901389
[28] Liu Weinan, Chen Rui, Shi Weiyi, et al. Narrow-frequency sharp-angular filters using all-dielectric cascaded metagratings [J]. Nanophotonics, 2020: 20200141.
[29] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces [J]. Advanced Optical Materials, 2016, 4(6): 818-833. doi:  10.1002/adom.201500690
[30] Bonod N, Neauport J. Diffraction gratings: from principles to applications in high-intensity lasers [J]. Advances in Optics & Photonics, 2016, 8: 156-199.
[31] Pierce J R. Coupling of modes of propagation [J]. Journal of Applied Physics, 1954, 25(2): 179-183. doi:  10.1063/1.1721599
[32] Collin Stéphane. Nanostructure arrays in free-space: Optical properties and applications [J]. Reports on Progress in Physics Physical Society, 2014, 77(12): 126402. doi:  10.1088/0034-4885/77/12/126402
[33] Quaranta G, Basset G, Martin O J F, et al. Recent advances in resonant waveguide gratings [J]. Laser & Photonics Review, 2018, 12(9): 1800017.
[34] Deng Zilan, Zhang Shuang, Wang Guoping. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces [J]. Nanoscale, 2016, 8: 1588. doi:  10.1039/C5NR07181J
[35] Liu W, Kivshar Y S. Generalized Kerker effects in nanophotonics and meta-optics [Invited] [J]. Optics Express, 2018, 26(10): 13085-13105. doi:  10.1364/OE.26.013085
[36] Chang-Hasnain C J, Yang W. High-contrast gratings for integrated optoelectronics [J]. Advances in Optics & Photonics, 2012, 4(3): 379-440.
[37] Yang W. High-contrast gratings for integrated optoelectronics [J]. Advances in Optics and Photonics, 2012, 4(3): 379-440. doi:  10.1364/AOP.4.000379
[38] Wang Zhaorong, Zhang Bo, Deng Hui, et al. Dispersion engineering for vertical microcavities using subwavelength gratings [J]. Physical Review Letters, 2015, 114(7): 073601. doi:  10.1103/PhysRevLett.114.073601
[39] Liu Wenxing, Yu Tianbao, Sun Yong, et al. Highly efficient broadband wave plates using dispersion-engineered high-index-contrast subwavelength gratings [J]. Physical Review Applied, 2019, 11(6): 064005. doi:  10.1103/PhysRevApplied.11.064005
[40] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]//European Conference on Antennas and Propagation, 2018.
[41] Popov V, Boust F, Burokur S N, et al. Controlling diffraction patterns with metagratings [J]. Physical Review Applied, 2018, 10(1): 011002. doi:  10.1103/PhysRevApplied.10.011002
[42] Rabinovich O, Kaplon I, Reis J, et al. Experimental demonstration and in-depth investigation of analytically designed anomalous reflection metagratings [J]. Physical Review B, 2019, 99(12): 125101. doi:  10.1103/PhysRevB.99.125101
[43] Epstein A, Rabinovich O. Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis [J]. Physical Review Applied, 2017, 8(5): 054037. doi:  10.1103/PhysRevApplied.8.054037
[44] Rabinovich O, Epstein A. Analytical design of printed circuit board (pcb) metagratings for perfect anomalous reflection [J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4086-4095. doi:  10.1109/TAP.2018.2836379
[45] Popov V, Boust F, Burokur S N, et al. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom [J]. Physical Review Applied, 2019, 11(2): 024074. doi:  10.1103/PhysRevApplied.11.024074
[46] Chalabi H, Ra"Di Y, Sounas D L, et al. Efficient anomalous reflection through near-field interactions in metasurfaces [J]. Physical Review B, 2017, 96(7): 075432. doi:  10.1103/PhysRevB.96.075432
[47] Patri A, Kenacohen S, Caloz C, et al. Large-angle, broadband and multifunctional directive waveguide scatterer gratings [J]. ACS Photonics, 2019, 6(12): 3298-3305. doi:  10.1021/acsphotonics.9b01319
[48] Yang J, Sell D, Fan J A, et al. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering [J]. Annalen der Physik, 2018, 530(1): 1700302. doi:  10.1002/andp.201700302
[49] Liu W, Miroshnichenko A E. Beam steering with dielectric metalattices [J]. ACS Photonics, 2018, 5(5): 1733-1741. doi:  10.1021/acsphotonics.7b01217
[50] Shi Weiyi, Deng Weimin, Liu Weinan, et al. Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection [J]. Chinese Optics Letters, 2020, 18(7): 073601. doi:  10.3788/COL202018.073601
[51] Neder V, Ra’di Y, Alù A, et al. Combined metagratings for efficient broad-angle scattering metasurface [J]. ACS Photonics, 2019, 6(4): 1010-1017. doi:  10.1021/acsphotonics.8b01795
[52] Uleman F, Neder V, Cordaro A, et al. Resonant metagratings for spectral and angular control of light for colored rooftop photovoltaics [J]. ACS Applied Energy Materials, 2020, 3(4): 3150-3156.
[53] Tiefenthaler K, Lukosz W. Integrated optical switches and gas sensors [J]. Optics Letters, 1984, 9: 137. doi:  10.1364/OL.9.000137
[54] Norton S M, Morris G M, Erdogan T, et al. Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models [J]. Journal of The Optical Society of America A-Optics Image Science and Vision, 1998, 15(2): 464-472. doi:  10.1364/JOSAA.15.000464
[55] Yih J, Chu Y, Mao Y, et al. Optical waveguide biosensors constructed with subwavelength gratings [J]. Applied Optics, 2006, 45(9): 1938-1942. doi:  10.1364/AO.45.001938
[56] Wawro D, Tibuleac S, Magnusson R, et al. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings[C]//SPIE, 2000, 3911: 86-94.
[57] Cunningham B T, Li P, Lin B, et al. Colorimetric resonant reflection as a direct biochemical assay technique [J]. Sensors and Actuators B-chemical, 2002, 81(2): 316-328.
[58] Lin B, Qiu J, Gerstenmeier J, et al. A label-free optical technique for detecting small molecule interactions [J]. Biosensors and Bioelectronics, 2002, 17(9): 827-834. doi:  10.1016/S0956-5663(02)00077-5
[59] Cunningham B T, Lin B, Qiu J, et al. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions [J]. Sensors and Actuators B-chemical, 2002, 85(3): 219-226. doi:  10.1016/S0925-4005(02)00111-9
[60] Cunningham B T, Li P, Schulz S C, et al. Label-free assays on the bind system [J]. Journal of Biomolecular Screening, 2004, 9(6): 481-490. doi:  10.1177/1087057104267604
[61] Fang Y, Ferrie A M, Fontaine N H, et al. Resonant waveguide grating biosensor for living cell sensing [J]. Biophysical Journal, 2006, 91(5): 1925-1940. doi:  10.1529/biophysj.105.077818
[62] Omalley S M, Xie X, Frutos A G, et al. Label-free high-throughput functional lytic assays [J]. Journal of Biomolecular Screening, 2007, 12(1): 117-125. doi:  10.1177/1087057106296496
[63] Walia J, Dhindsa N, Khorasaninejad M, et al. Color generation and refractive index sensing using diffraction from 2d silicon nanowire arrays [J]. Small, 2014, 10(1): 144-151. doi:  10.1002/smll.201300601
[64] Hermannsson P G, Vannahme C, Smith C L, et al. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths [J]. Applied Physics Letters, 2014, 105(7): 071103. doi:  10.1063/1.4893664
[65] Wang Yongjin, Chen Jiajia, Shi Zheng, et al. Suspended membrane GaN gratings for refractive index sensing [J]. Applied Physics Express, 2014, 7(5): 052201. doi:  10.7567/APEX.7.052201
[66] Marciniak M, Gębski M, Dems M, et al. Subwavelength high contrast gratings as optical sensing elements [J]. Scientific Bulletin. Physics / Technical University of Łódź, 2017, 38: 61-70.
[67] Sahoo P K, Sarkar S, Joseph J, et al. High sensitivity guided-mode-resonance optical sensor employing phase detection [J]. Scientific Reports, 2017, 7(1): 7607-7607. doi:  10.1038/s41598-017-07843-z
[68] Ganesh N, Zhang W, Mathias P C, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface [J]. Nature Nanotechnology, 2007, 2(8): 515-520. doi:  10.1038/nnano.2007.216
[69] Ganesh N, Mathias P C, Zhang W, et al. Distance dependence of fluorescence enhancement from photonic crystal surfaces [J]. Journal of Applied Physics, 2008, 103(8): 083104. doi:  10.1063/1.2906175
[70] Kano H, Kawata S. Two-photon-excited fluorescence enhanced by a surface plasmon. [J]. Optics Letters, 1996, 21(22): 1848-1850. doi:  10.1364/OL.21.001848
[71] Wenseleers W, Stellacci F, Meyerfriedrichsen T, et al. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters [J]. Journal of Physical Chemistry B, 2002, 106(27): 6853-6863. doi:  10.1021/jp014675f
[72] Soria S, Katchalski T, Teitelbaum E, et al. Enhanced two-photon fluorescence excitation by resonant grating waveguide structures [J]. Optics Letters, 2004, 29(17): 1989-1991. doi:  10.1364/OL.29.001989
[73] André Selle, Kappel C, Bader M A, et al. Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures [J]. Optics Letters, 2005, 30(13): 1683-1685. doi:  10.1364/OL.30.001683
[74] Soria S, Badenes G, Bader M A, et al. Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation [J]. Applied Physics Letters, 2005, 87(8): 081109. doi:  10.1063/1.2033130
[75] Thayil A, Muriano A, Salvador J P, et al. Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures [J]. Optics Express, 2008, 16(17): 13315-13322. doi:  10.1364/OE.16.013315
[76] Nazirizadeh Y, Bog U, Sekula S, et al. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers [J]. Optics Express, 2010, 18(18): 19120-19128. doi:  10.1364/OE.18.019120
[77] Nazirizadeh Y, Behrends V, Prosz A, et al. Intensity interrogation near cutoff resonance for label-free cellular profiling [J]. Scientific Reports, 2016, 6(1): 24685-24685. doi:  10.1038/srep24685
[78] Jahns S, Brau M, Meyer B, et al. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. [J]. Biomedical Optics Express, 2015, 6(10): 3724-3736. doi:  10.1364/BOE.6.003724
[79] Li H, Hsu W, Liu K, et al. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities [J]. Sensors and Actuators B-chemical, 2015: 371-380.
[80] Lin Y, Hsieh W, Chau L, et al. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection [J]. Sensors and Actuators B-Chemical, 2017: 659-666.
[81] Mcmahon J M, Henzie J, Odom T W, et al. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons [J]. Optics Express, 2007, 15(26): 18119-18129. doi:  10.1364/OE.15.018119
[82] Sun L B, Hu X L, Xu Y, et al. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films [J]. Optics Communications, 2014, 333(15): 16-21.
[83] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667-669. doi:  10.1038/35570
[84] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes [J]. Physical Review B, 1998, 58(11): 6779-6782. doi:  10.1103/PhysRevB.58.6779
[85] Chen Q, Cumming D R. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films [J]. Optics Express, 2010, 18(13): 14056-14062. doi:  10.1364/OE.18.014056
[86] Chen Q, Das D, Chitnis D, et al. A CMOS image sensor integrated with plasmonic colour filters [J]. Plasmonics, 2012, 7(4): 695-699. doi:  10.1007/s11468-012-9360-6
[87] Yokogawa S, Burgos S P, Atwater H A, et al. Plasmonic color filters for CMOS image sensor applications [J]. Nano Letters, 2012, 12(8): 4349-4354. doi:  10.1021/nl302110z
[88] Chen Q, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters [J]. IEEE Photonics Technology Letters, 2012, 24(3): 197-199. doi:  10.1109/LPT.2011.2176333
[89] Burgos S P, Yokogawa S, Atwater H A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor [J]. ACS Nano, 2013, 7(11): 10038-10047. doi:  10.1021/nn403991d
[90] Horie Y, Han S, Lee J, et al. Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated cmos image sensor technologies [J]. Nano Letters, 2017, 17(5): 3159-3164. doi:  10.1021/acs.nanolett.7b00636
[91] Mahani F F, Mokhtari A, Mehran M, et al. Dual mode operation, highly selective nanohole array-based plasmonic colour filters [J]. Nanotechnology, 2017, 28(38): 385203. doi:  10.1088/1361-6528/aa80f4
[92] Tang L, Latif S, Miller D A, et al. Plasmonic device in silicon CMOS [J]. Electronics Letters, 2009, 45(13): 706-708. doi:  10.1049/el.2009.0839
[93] Balaur E, Sadatnajafi C, Kou S S, et al. Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels [J]. Scientific Reports, 2016, 6(1): 28062-28062. doi:  10.1038/srep28062
[94] Yu Yan, Chen Qin, Wen Long, et al. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters [J]. Optics Express, 2015, 23(17): 21994-22003. doi:  10.1364/OE.23.021994
[95] Knop K. Diffraction gratings for color filtering in the zero diffraction order [J]. Applied Optics, 1978, 17(22): 3598-3603. doi:  10.1364/AO.17.003598
[96] Ganesh N, Xiang A, Beltran N B, et al. Compact wavelength detection system incorporating a guided-mode resonance filter [J]. Applied Physics Letters, 2007, 90(8): 81103. doi:  10.1063/1.2591342
[97] Duempelmann L, Gallinet B, Novotny L, et al. Multispectral imaging with tunable plasmonic filters [J]. ACS Photonics, 2017, 4(2): 236-241. doi:  10.1021/acsphotonics.6b01003
[98] Zeng B, Gao Y, Bartoli F J, et al. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters [J]. Scientific Reports, 2013, 3(1): 2840-2840. doi:  10.1038/srep02840
[99] Shrestha V R, Lee S, Kim E, et al. polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array [J]. Scientific Reports, 2015, 5(1): 12450-12450. doi:  10.1038/srep12450
[100] Wang J, Fan Q, Zhang S, et al. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency [J]. Applied Physics Letters, 2017, 110(3): 31110. doi:  10.1063/1.4974455
[101] Lee K, Jang J Y, Park S J, et al. Angle‐insensitive and CMOS-compatible subwavelength color printing [J]. Advanced Optical Materials, 2016, 4(11): 1696-1702. doi:  10.1002/adom.201600287
[102] Koirala I, Shrestha V R, Park C, et al. All dielectric transmissive structural multicolor pixel incorporating a resonant grating in hydrogenated amorphous silicon. [J]. Scientific Reports, 2017, 7(1): 13574. doi:  10.1038/s41598-017-14093-6
[103] Koirala I, Shrestha V R, Park C, et al. Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure [J]. Scientific Reports, 2017, 7(1): 40073. doi:  10.1038/srep40073
[104] Crozier K B, Seo K, Park H, et al. controlling the light absorption in a photodetector via nanowire waveguide resonances for multispectral and color imaging [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-12.
[105] Seo K, Wober M, Steinvurzel P, et al. Multicolored vertical silicon nanowires [J]. Nano Letters, 2011, 11(4): 1851-1856. doi:  10.1021/nl200201b
[106] Park H, Dan Y, Seo K, et al. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption [J]. Nano Letters, 2014, 14(4): 1804-1809. doi:  10.1021/nl404379w
[107] Yoon J, Kim K, Meyyappan M, et al. Optical characteristics of silicon-based asymmetric vertical nanowire photodetectors [J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2261-2266. doi:  10.1109/TED.2017.2682878
[108] Yue W, Gao S, Lee S, et al. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity [J]. Scientific Reports, 2016, 6(1): 29756-29756. doi:  10.1038/srep29756
[109] Park C, Shrestha V R, Yue W, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks [J]. Scientific Reports, 2017, 7(1): 2556-2556. doi:  10.1038/s41598-017-02911-w
[110] Park C, Koirala I, Gao S, et al. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks [J]. Optics Express, 2019, 27(2): 667-679. doi:  10.1364/OE.27.000667
[111] Miyata M, Nakajima M, Hashimoto T, et al. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces [J]. ACS Photonics, 2019, 6(6): 1442-1450. doi:  10.1021/acsphotonics.9b00042
[112] Vashistha V, Vaidya G, Gruszecki P, et al. Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas [J]. Scientific Reports, 2017, 7(1): 8092. doi:  10.1038/s41598-017-07986-z
[113] Yang Bo, Liu Wenwei, Li Zhancheng, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels [J]. Advanced Optical Materials, 2018, 6(4): 1701009. doi:  10.1002/adom.201701009
[114] Dan A, Barshilia H C, Chattopadhyay K, et al. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review [J]. Renewable & Sustainable Energy Reviews, 2017, 79: 1050-1077.
[115] Khodasevych I, Wang L, Mitchell A, et al. Micro- and nanostructured surfaces for selective solar absorption [J]. Advanced Optical Materials, 2015, 3(7): 852-881. doi:  10.1002/adom.201500063
[116] Cui Yanxia, He Yingran, Jin Yi, et al. Plasmonic and metamaterial structures as electromagnetic absorbers [J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.
[117] Zhao Bin, Hu Mingke, Ao Xianze, et al. Radiative cooling: A review of fundamentals, materials, applications, and prospects [J]. Applied Energy, 2019: 489-513.
[118] Cui Yanxia, Fung Kung Hin, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial sab [J]. Nano Letters, 2012, 12(3): 1443-1447. doi:  10.1021/nl204118h
[119] Li Yuyin, Liu Zhengqi, Zhang Houjiao, et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks [J]. Optics Express, 2019, 27(8): 11809-11818. doi:  10.1364/OE.27.011809
[120] Li Junyu, Bao Li, Jiang Shun, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging [J]. Optics Express, 2019, 27(6): 8375-8386. doi:  10.1364/OE.27.008375
[121] Lin H, Sturmberg B C, Lin K, et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light [J]. Nature Photonics, 2019, 13(4): 270-276. doi:  10.1038/s41566-019-0389-3
[122] Luo M, Shen S, Zhou L, et al. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime [J]. Optics Express, 2017, 25(14): 16715-16724. doi:  10.1364/OE.25.016715
[123] Han X, He K, He Z, et al. Tungsten-based highly selective solar absorber using simple nanodisk array [J]. Optics Express, 2017, 25(24): A1072-A1078. doi:  10.1364/OE.25.0A1072
[124] Nielsen M G, Pors A, Albrektsen O, et al. Efficient absorption of visible radiation by gap plasmon resonators [J]. Optics Express, 2012, 20(12): 13311-13319. doi:  10.1364/OE.20.013311
[125] Mann S A, Garnett E C. Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells [J]. ACS Photonics, 2015, 2(7): 816-821. doi:  10.1021/acsphotonics.5b00260
[126] Chang C, Kortkamp W J, Nogan J, et al. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting [J]. Nano Letters, 2018, 18(12): 7665-7673. doi:  10.1021/acs.nanolett.8b03322
[127] Zhang Nan, Zhou Peihong Cheng Dengmu, et al. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers [J]. Optics Letters, 2013, 38(7): 1125-1127. doi:  10.1364/OL.38.001125
[128] Cattoni A, Ghenuche P, Haghirigosnet A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography [J]. Nano Letters, 2011, 11(9): 3557-3563. doi:  10.1021/nl201004c
[129] Zhao Bo, Wang Liping, Shuai Yong, et al. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure [J]. International Journal of Heat and Mass Transfer, 2013, 67: 637-645.
[130] Zhang B, Hendrickson J, Guo J. Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures [J]. Journal of the Optical Society of America B, 2013, 30(3): 656. doi:  10.1364/JOSAB.30.000656
[131] Zhang Nan, Zhou Peiheng, Wang Shuya, et al. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers [J]. Optics Communications, 2015, 338: 388-392.
[132] Wu C, Neuner B, Shvets G, et al. Large-area, wide-angle, spectrally selective plasmonic absorber [J]. Physical Review B, 2011, 84(7): 075102. doi:  10.1103/PhysRevB.84.075102
[133] Lei L, Li S, Huang H, et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. [J]. Optics Express, 2018, 26(5): 5686-5693. doi:  10.1364/OE.26.005686
[134] Kang S, Qian Z, Rajaram V, et al. Ultra‐narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy [J]. Advanced Optical Materials, 2019, 7(2): 1801236.1-1801236.8.
[135] Butun S, Aydin K. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers [J]. Optics Express, 2014, 22(16): 19457-19468. doi:  10.1364/OE.22.019457
[136] Liu X, Tyler T, Starr T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. [J]. Physical Review Letters, 2011, 107(4): 045901. doi:  10.1103/PhysRevLett.107.045901
[137] Ma Wei, Wen Yongzheng, Yu Xiaomei, et al. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators [J]. Optics Express, 2013, 21(25): 30724-30730. doi:  10.1364/OE.21.030724
[138] Grant J, Mccrindle I J, Li C, et al. Multispectral metamaterial absorber [J]. Optics Letters, 2014, 39(5): 1227-1230. doi:  10.1364/OL.39.001227
[139] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J]. Nature Communications, 2011, 2(1): 517. doi:  10.1038/ncomms1528
[140] Li W, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber [J]. Advanced Materials, 2014, 26(47): 7959-7965. doi:  10.1002/adma.201401874
[141] Nagarajan A, Vivek K, Shah M, et al. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration [J]. Advanced Optical Materials, 2018, 6(16): 1800253. doi:  10.1002/adom.201800253
[142] Muhammad N, Tang X, Tao F, et al. Broadband polarization-insensitive absorption by metasurface with metallic pieces for energy harvesting application [J]. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2019, 249: 114419.
[143] Liu Jign, Chen Wei, Zheng Jiachun, et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared [J]. Nanomaterials, 2019, 10(1): 27. doi:  10.3390/nano10010027
[144] Wu Dong, Liu Chang, Liu Yumin, et al. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region [J]. Optics Letters, 2017, 42(3): 450-453. doi:  10.1364/OL.42.000450
[145] Liu Z, Tang P, Liu X, et al. Truncated titanium/semiconductor cones for wide-band solar absorbers [J]. Nanotechnology, 2019, 30(30): 305203. doi:  10.1088/1361-6528/ab109d
[146] Chi Kequn, Yang Liu, Liu Zhaolang, et al. Large-scale nanostructured low-temperature solar selective absorber [J]. Optics Letters, 2017, 42(10): 1891-1894. doi:  10.1364/OL.42.001891
[147] Chi K, Yang L, He S, et al. Ultrathin nanostructured solar selective absorber based on a two-dimensional hemispherical shell array [J]. Applied Physics Letters, 2018, 112(6): 063903. doi:  10.1063/1.5017574
[148] Zhang Z, Mo Y, Wang H, et al. High-performance and cost-effective absorber for visible and near-infrared spectrum based on a spherical multilayered dielectric–metal structure [J]. Applied Optics, 2019, 58(16): 4467-4473. doi:  10.1364/AO.58.004467
[149] Ding Q, Barna S F, Jacobs K, et al. Feasibility analysis of nanostructured planar focusing collectors for concentrating solar power applications [J]. ACS Applied Energy Materials, 2018, 1(12): 6927-6935.
[150] Wu Shangliang, Ye Yan, Jiang Zhouying, et al. Large‐area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption [J]. Advanced Optical Materials, 2019, 7(24): 1901162. doi:  10.1002/adom.201901162
[151] Yang Weijian, Sun Tianbo, Rao Yi, et al. High speed optical phased array using high contrast grating all-pass filters. [J]. Optics Express, 2014, 22(17): 20038-20044. doi:  10.1364/OE.22.020038
[152] Zhang Ziying, Kang Ming, Zhang Xueqian, et al. Coherent perfect diffraction in metagratings [J]. Advanced Materials, 2020, 32(36): 2002341. doi:  10.1002/adma.202002341