[1] Nordsieck K H, Harris W M. Ultraviolet astronomical polarimetry: Some results and prospects [C]//Ultraviolet and X-Ray Detection, Spectroscopy, and Polarimetry III. SPIE, 1999, 3764: 124-133.
[2] Wu Ji, Sun Lilin, You Liang, et al. Prospect for Chinese space science in 2016-2030 [J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6): 707-720. (in Chinese)
[3] Zhang Chaoyang, Cheng Haifeng, Chen Zhaohui, et al. The present research and developing trend of polarization remote sensing [J]. Laser & Infrared, 2007, 37(12): 1237-1240. (in Chinese)
[4] Sun Xiaobing, Qiao Yanli, Hong Jin. Review of polarization remote sensing techniques and applications in the visible and infrared [J]. Journal of Atmospheric and Environmental Optics, 2010, 5(3): 175-189. (in Chinese)
[5] Zhou Qiangguo, Huang Zhiming, Zhou Wei. Research progress and application of polarization imaging technology [J]. Infrared Technology, 2021, 43(9): 817-828. (in Chinese)
[6] Dai Hu. Investigation and optimization of polarimetry and polarimetric imaging system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. (in Chinese)
[7] Coffeen D L. Wavelength dependence of polarization XVI atmosphere of venus [J]. Astronomical Journal, 1969, 74: 446-460. doi:  10.1086/110823
[8] Stenflo J O, Dravins D, Wihlborg N, et al. Search for spectral line polarization in the solar vacuum ultraviolet [J]. Solar Physics, 1980, 66: 13-19. doi:  10.1007/BF00150514
[9] Esposito L W, Travis L D. Polarization studies of the venus UV contrasts: Cloud height and haze variability [J]. Icarus, 1982, 51(2): 374-390. doi:  10.1016/0019-1035(82)90090-2
[10] Fineschi S, Hoover R B, Fontenla J M, et al. Polarimetry of extreme ultraviolet lines in solar astronomy [J]. Optical Engineering, 1991, 30(8): 1161-1168. doi:  10.1117/12.55922
[11] Somerville W B. Ultraviolet interstellar polarization [J]. Vistas in Astronomy, 1991, 34: 51-59. doi:  10.1016/0083-6656(91)90019-O
[12] Bjorkman K S. Recent results from ultraviolet and optical spectropolarimetry of hot stars [C]//Symposium-International Astronomical Union, Cambridge University Press, 1994, 162: 219-229.
[13] Narukage N, Tsuneta S, Bando T, et al. Overview of chromospheric lyman-alpha spectropolarimeter (CLASP) [C]//Solar Physics and Space Weather Instrumentation IV, SPIE, 2011, 8148: 200-216.
[14] Giono G, Ishikawa R, Narukage N, et al. Polarization calibration of the chromospheric lyman-alpha spectropolarimeter for a 0.1% polarization sensitivity in the VUV range. Part II: In-flight calibration [J]. Solar Physics, 2017, 292: 1-19. doi:  10.1007/s11207-016-1032-9
[15] Ishikawa R, Kano R, Winebarger A, et al. CLASP: A UV spectropolarimeter on a sounding rocket for probing thechromosphere-corona transition regio [J]. IAU General Assembly, 2015, 29: 2254536.
[16] Fox G K, Code A D, Anderson C M, et al. Solar system observations by the wisconsin ultraviolet photopolarimeter experiment. II. The first linear ultraviolet spectropolarimetry of Io [J]. Astronomical Journal, 1997, 113(3): 1158-1160.
[17] Kubo M, Kano R, Kobayashi K, et al. A sounding rocket experiment for the chromospheric lyman-alpha spectro-polarimeter (CLASP) [J]. Solar Polarization 7, 2014, 489: 307.
[18] Kano R, Ishikawa R, Winebarger A, et al. Ultraviolet spectropolarimetric observations to probe the solar chromosphere and transition region [C]//1st Asia-Pacific Conference on Plasma Physics, 2017, 9: SA-O1.
[19] West E A, Porter J G, Davis J M, et al. Overview of the solar ultraviolet magnetograph investigation [C]//Instrumentation for UV/EUV Astronomy and Solar Missions, SPIE, 2000, 4139: 350-361.
[20] Li Hao. Scattering polarization property of solar spectrum [D]. Kunming: Yunnan Observatories, Chinese Academy of Sciences, 2014. (in Chinese)
[21] Li Hao, Qu Zhongquan. Progressed in studying scattering polarization in solar atmosphere [J]. Progress in Astronomy, 2014, 32(4): 423-440. (in Chinese)
[22] Davis J M, West E A, Moore R L, et al. MTRAP: The magnetic transition region probe [C]//Solar Physics and Space Weather Instrumentation, SPIE, 2005, 5901: 273-280.
[23] Belluzzi L, Bueno J T. The polarization of the solar Mg II h and k lines [J]. The Astrophysical Journal Letters, 2012, 750(1): L11. doi:  10.1088/2041-8205/750/1/L11
[24] West E A, Porter J G, Davis J M, et al. Development of a polarimeter for magnetic field measurements in the ultraviolet [C]//Polarization Analysis and Measurement IV, SPIE, 2002, 4481: 109-117.
[25] Kano R, Bueno J T, Winebarger A, et al. Discovery of scattering polarization in the hydrogen Lyα line of the solar disk radiation [J]. The Astrophysical Journal Letters, 2017, 839(1): L10. doi:  10.3847/2041-8213/aa697f
[26] Wang Shuang. Polarmetric study of earth-like exoplanets and asteroids [D]. Kunming: Yunnan Observatories, Chinese Academy of Sciences, 2019. (in Chinese)
[27] Song Wei, Qu Zhongquan. Study of polarimetries of the earth-like exoplanet [J]. Acta Astronomica Sinica, 2016, 57(2): 165-180. (in Chinese)
[28] Chaufray J Y, Lamy L, Rousselot P, et al. UV exploration of the solar system [J]. Experimental Astronomy, 2021, 54: 1-18.
[29] Ben-Jaffel L, Harris W, Bommier V, et al. Predictions on the application of the Hanle effect to map the surface magnetic field of Jupiter [J]. Icarus, 2005, 178(2): 297-311. doi:  10.1016/j.icarus.2005.01.021
[30] Meng Meiniang, Sun Xiaohui. A revisit to the optical starlight polarization catalogue by heiles: Distance update [J]. Acta Astronomica Sinica, 2021, 62(1): 31-38. (in Chinese)
[31] Martin P G, Clayton G C, Wolff M J. Ultraviolet interstellar linear polarization V Analysis of the final data set [J]. The Astrophysical Journal, 1999, 510(2): 905. doi:  10.1086/306613
[32] Li Moping, Zhao Gang, Li Aigen. Interstellar dust: Current status and perspectives [J]. Progress in Astronomy, 2006, 24(3): 260-276. (in Chinese)
[33] Xue Mengyao, Jiang Biwei, Gao Jian. Interstellar extinction in the magellanic clouds [J]. Progress in Astronomy, 2014, 32(2): 194-209. (in Chinese)
[34] Wang Yuxi, Gao Jian, Jiang Biwei, et al. The extinction laws and dust properties of the milky way and external galaxies [J]. Progress in Astronomy, 2018, 36(3): 283-305. (in Chinese)
[35] Calvert J, Griner D, Montenegro J, et al. An ultraviolet polarimeter for the solar maximum mission [J]. Optical Engineering, 1979, 18(3): 287-290.
[36] Woodgate B E, Tandberg-Hanssen E A, Bruner E C, et al. The ultraviolet spectrometer and polarimeter on the solar maximum mission [J]. Solar Physics, 1980, 65: 73-90. doi:  10.1007/BF00151385
[37] Tsuzuki T, Ishikawa R, Kano R, et al. Optical design of the chromospheric layer spectro-polarimeter (CLASP2) [C]//Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, SPIE, 2020, 11444: 1088-1099.
[38] Russell E E, Watts L A, Pellicori S F, et al. Orbiter cloud photopolarimeter for the pioneer venus mission [C]//Optical Polarimetry: Instrumentation and Applications, SPIE, 1977, 112: 28-44.
[39] Keyes C D, Koratkar A P, Dahlem M, et al. Faint object spectrograph instrument handbook [D]. US: HST Instrument Handbook, 1995.
[40] Somerville W B, Allen R G, Carnochan D J, et al. Ultraviolet interstellar polarization observed with the hubble space telescope [J]. The Astrophysical Journal, 1994, 427: L47-L50. doi:  10.1086/187361
[41] Nordsieck K H, Code A D, Anderson C M, et al. Exploring ultraviolet astronomical polarimetry: Results from the wisconsin ultraviolet photo-polarimeter experiment (WUPPE) [C]//X-Ray and Ultraviolet Polarimetry, SPIE, 1994, 2010: 2-11.
[42] Stenflo J O, Biverot H, Stenmark L. Ultraviolet polarimeter to record resonance-line polarization in the solar spectrum around 130–150 nm [J]. Applied Optics, 1976, 15(5): 1188-1198. doi:  10.1364/AO.15.001188
[43] Harme R J. Astronomical capabilities of the faint object spectrograph on space telescope [C]//NASA Conference Publication. 1982, 2244: 55-75.
[44] Taylor M, Code A D, Nordsieck K H, et al. First ultraviolet spectropolarimetry of hot supergiants [J]. The Astrophysical Journal, 1991, 382: L85-L88. doi:  10.1086/186218
[45] Harris W M, Nordsieck K H, Scherb F, et al. UV photopolarimetric imaging of C/1995 O1 (hale-bopp) with the wide field imaging survey polarimeter (WISP) [J]. Earth, Moon, and Planets, 1997, 78: 161-167. doi:  10.1023/A:1006297428846
[46] Feller A, Gandorfer A, Iglesias F A, et al. The SUNRISE UV spectropolarimeter and imager for SUNRISE III [C]//Ground-based and Airborne Instrumentation for Astronomy VIII, SPIE, 2020, 11447: 2260-2267.
[47] Pertenais M, Neiner C, et al. Optical design of Arago’s spectropolarimeter [C]//International Conference on Space Optics-ICSO 2016, SPIE, 2017, 10562: 658-664.
[48] Pertenais M, Neiner C, Petit P. Full-Stokes polychromatic polarimeter design for Arago [C]//Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, SPIE, 2016, 9905: 959-966.
[49] Muslimov E, Bouret J C, Neiner C, et al. POLLUX: A UV spectropolarimeter for the LUVOIR space telescope project [C]//Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, SPIE, 2018, 10699: 33-45.
[50] Muslimov E, Bouret J C, Neiner C, et al. Precision requirements for the POLLUX-LUVOIR spectropolarimeter [C]//Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, SPIE, 2020, 11444: 1050-1059.
[51] Gal M L, Ariste A L, Neiner C. A far ultra-violet polarimeter by reflection for pollux on board LUVOIR [J/OL]. [2019-07-29]https://arxiv.org/abs/1907.12281
[52] Bouret J C, Neiner C, de Castro A I G, et al. The science case for POLLUX: A high-resolution UV spectropolarimeter onboard LUVOIR [C]//Space Telescopes and Instrumentation 2018, Ultraviolet to Gamma Ray, SPIE, 2018, 10699: 851-861.
[53] Peter H, Abbo L, Andretta V, et al. Solar magnetism eXplorer (SolmeX) exploring the magnetic field in the upper atmosphere of our closest star [J]. Experimental Astronomy, 2012, 33: 271-303. doi:  10.1007/s10686-011-9271-0
[54] Scowen P A, Gayley K, Ignace R, et al. The polstar high resolution spectropolarimetry MIDEX mission [J]. Astrophysics and Space Science, 2022, 367(12): 121. doi:  10.1007/s10509-022-04107-9
[55] Andersson B G, Clayton G C, Doney K D, et al. Ultraviolet spectropolarimetry with Polstar: Interstellar medium science [J]. Astrophysics and Space Science, 2022, 367(12): 127. doi:  10.1007/s10509-022-04153-3
[56] Keski-Kuha R A M, Larruquert J I, Gum J S, et al. Optical coatings and materials for ultraviolet space applications [C]//Ultraviolet-Optical Space Astronomy Beyond HST. 1999, 164: 406.
[57] Sembach K, Beasley M, et a. Technology investments to meet the needs of astronomy at ultraviolet wavelengths in the 21st century [C]//Astro 2010 Technology Development White Paper, 2009.
[58] Wang F, Li S, Zhou H, et al. Al mirrors in vacuum ultraviolet region [C]//Optical Design and Testing IX, SPIE, 2019, 11185: 70-75.
[59] Quijada M A, de Marcos L V R, Del Hoyo J G, et al. Advanced Al mirrors protected with LiF overcoat to realize stable mirror coatings for astronomical telescopes [C]//Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V, SPIE, 2022, 12188: 674-682.
[60] Wang J, Zhang J, Jiao H, et al. The reflectance of the Al+ MgF2 film in the far-ultraviolet [C]//Optical Interference Coatings. Optica Publishing Group, 2019.
[61] Nordsieck K H, Code A D, Meade M R, et al. The wisconsin ultraviolet photo-polarimeter experiment (WUPPE) [C]//Bulletin of the American Astronomical Society, 1991.
[62] Windt D L. EUV multilayer coatings for solar imaging and spectroscopy [C]//Solar Physics and Space Weather Instrumentation VI, SPIE, 2015, 9604: 161-172.
[63] Qi Runze, Zhang Jinlong, Wu Jiali, et al. Thin film optical elements in extreme ultraviolet and vacuum ultraviolet [J]. Acta Optica Sinica, 2022, 42(11): 1134003. (in Chinese) doi:  10.3788/AOS202242.1134003
[64] Zhang Lichao. Progress in EUV multilayer coating technologies [J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6): 554-565. (in Chinese)
[65] Qi Runze, Zhang Jinlong, Huang Qiushi, et al. Research progress of multilayer optical elements in extreme ultraviolet and vacuum ultraviolet [J]. Optics and Precision Engineering, 2022, 30(21): 2639-2654. (in Chinese) doi:  10.37188/OPE.20223021.2639
[66] Iglesias F A, Feller A. Instrumentation for solar spectropolarimetry: State of the art and prospects [J]. Optical Engineering, 2019, 58(8): 082417.
[67] Hou Junfeng, Sun Yingzi, Lin Jiaben, et al. In situ calibration of the tunable liquid-crystal birefringent filter(Invited) [J]. Acta Photonica Sinica, 2023, 52(5): 104-113. (in Chinese)
[68] Hou Junfeng, Deng Yuanyong, Wang Dongguang, et al. Application and prospect of liquid crystal modulation technology in solar magnetic field detection [J]. Spacecraft Environment Engineering, 2021, 38(3): 296-304. (in Chinese)
[69] Hu Jianming, Zeng Aijun, Wang Xiangzhao. Method to measure phase retardation of wave plate based on photoelastic modulation [J]. Acta Optica Sinica, 2006, 26(11): 1681-1686. (in Chinese)
[70] Jia Rong, Wang Feng, Liu Xiao. Design and experiment of time-sharing ultraviolet polarization imaging detection system [J]. Laser & Optoelectronics Progress, 2020, 57(2): 021105. (in Chinese)
[71] Li Hao, Li Yuan, Hou Qi. Polarization imaging technology of near ultraviolet band in severe weather [J]. Computer Measurement & Control, 2023, 31(1): 230-236. (in Chinese)
[72] Liu Biliu, Shi Jiaming, Zhao Dapeng, et al. Mechanism of infrared polarization detection [J]. Infrared and Laser Engineering, 2008, 29(5): 777-781. (in Chinese)
[73] Liu Ying, Li Zhigang, Li Futian. Polarization characteristic of Al+MgF2 film at VUV [J]. Spectroscopy and Spectral Analysis, 2002, 22(5): 724-727. (in Chinese)
[74] Liu Ying, Li Futian. Polarization characteristic of lif polarizer at UV-VUV spectral range [J]. Spectroscopy and Spectral Analysis, 2002, 22(4): 552-555. (in Chinese)
[75] Zhou Jian, Zhou Yi, Ni Xinyue, et al. Research progress and applications of polarization integrated infrared photodetector [J]. Opto-Electronic Engineering, 2021, 50(5): 67-84. (in Chinese)
[76] Li Xinkai. Calibration method research for time divided polarimetric imaging system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese)
[77] Dhez P. Polarizers and polarimeters in the X-UV range [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 261(1-2): 66-71.
[78] Gutiérrez-Luna N, Capobianco G, Malvezzi A M, et al. Multilayer beamsplitter polarizers for key UV-FUV spectral lines of solar polarimetry [J]. Optics Express, 2022, 30(16): 29735-29748. doi:  10.1364/OE.463215
[79] Larruquert J I, Malvezzi A M, Rodríguez-de Marcos L, et al. Polarizers tuned at key far-UV spectral lines for space instrumentation [C]//EUV and X-ray Optics: Synergy between Laboratory and Space V, SPIE, 2017, 10235: 90-97.
[80] Wang Xiaodan. Research on image processing technology based on wollaston prisms polarization camera [D]. Changchun: Changchun University of Science and Technology, 2020.
[81] Hardi P, Rochus P. Measuring magnetic field in the outer atmosphere-solar magnetism eXplorer (SolmeX) [C]//European Solar Physics Meeting (ESPM-13) in Rhodes, 2011.
[82] Zhang Chong, Hu Jingpei, Zhou Ruyi, et al. Design and analysis of inverse polarization grating devices for deep ultraviolet light [J]. Chinese Journal of Lasers, 2020, 47(3): 0301005. (in Chinese)
[83] Shi Jingjing, Hu Yadong, Li Mengfan, et al. Research and accuracy verification of linear polarization measurement technology based on spectral modulation [J]. Acta Optica Sinica, 2022, 42(2): 141-150. (in Chinese)
[84] Ji Haiyue, Li Shuang, Xiang Guanghui, et al. Research on information extraction of spectrum polarization measurement technology based on spatial amplitude modulation [J]. Acta Optica Sinica, 2023, 43(12): 0212003. (in Chinese)
[85] Wang Guangming, Zhao Baosheng, Wei Peiyong, et al. The research of WSZ Extreme ultraviolet detector and the data acquisition circuits [J]. Acta Photonica Sinica, 2006, 12: 1823-1826. (in Chinese)
[86] Huang Qiaolin. Aerospace Optical Remote Sensor CCD/CMOS Photoelectric Imaging Technology [M]. Beijing: Beijing Institute of Technology Press, 2021. (in Chinese)
[87] Luo Lei, Tang Libin, Zuo Wenbin. Research progress in ultraviolet enhanced image sensors [J]. Infrared Technology, 2021, 43(11): 1023-1033. (in Chinese)
[88] Zhang Mengjiao, Cai Yi, Jiang Feng, et al. Silicon-based ultraviolet photodetection: Progress and prospects [J]. Chinese Optics, 2019, 12(1): 19-37. (in Chinese) doi:  10.3788/co.20191201.0019
[89] Gao Guolong. Back-illuminated CCD device with integrated UV filter [J]. Infrared, 2002(10): 42. (in Chinese)
[90] Hoenk M. Delta doping technology for UV photon counting detector arrays [C]//KISS Single Photon Counting Detectors Workshop, 2010.
[91] Buchin M P. Low-light imaging-ICCD, EMCCD, and sCMOS compete in low-light imaging [J]. Laser Focus World, 2011, 47(7): 51.
[92] Rodríguez-de Marcos L V, Boris D R, Del Hoyo J, et al. Advanced AlF3-passivated aluminum mirrors for UV astronomy [C]//Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems III, SPIE, 2021, 11820: 1182005.