[1] Veldkamp W B, McHugh T J. Binary optics [J]. Scientific American, 1992, 266(5): 92-97. doi:  10.1038/scientificamerican0592-92
[2] Cai W, Shalaev V M. Optical Metamaterials[M]. USA: Springer, 2010.
[3] Liu Y M, Zhang X. Metamaterials: A new frontier of science and technology [J]. Chemical Society Reviews, 2011, 40(5): 2494-2507. doi:  10.1039/c0cs00184h
[4] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters, 2000, 84(18): 4184-4187. doi:  10.1103/PhysRevLett.84.4184
[5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
[6] Cai W, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials [J]. Nature Photonics, 2007, 1(4): 224-227. doi:  10.1038/nphoton.2007.28
[7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[8] Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi:  10.1103/PhysRevLett.85.3966
[9] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337. doi:  10.1126/science.1210713
[10] Chen S Q, Li Z C, Liu W W, et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces [J]. Advanced Materials, 2019, 31(16): 1802458. doi:  10.1002/adma.201802458
[11] Chen S Q, Liu W W, Li Z C, et al. Metasurface-empowered optical multiplexing and multifunction [J]. Advanced Materials, 2020, 32(3): 1805912. doi:  10.1002/adma.201805912
[12] Li Z C, Liu W W, Cheng H, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror [J]. Advanced Materials, 2020, 32(26): 1907983. doi:  10.1002/adma.201907983
[13] Liu W W, Cheng H, Tian J G, et al. Diffractive metalens: From fundamentals, practical applications to current trends [J]. Advances in Physics: X, 2020, 5(1): 1742584. doi:  10.1080/23746149.2020.1742584
[14] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography [J]. Nano Letters, 2018, 18(5): 2885-2892. doi:  10.1021/acs.nanolett.8b00047
[15] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6: 8241. doi:  10.1038/ncomms9241
[16] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission [J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi:  10.1038/nnano.2015.186
[17] Mueller J B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901
[18] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(9): 4932-4936. doi:  10.1021/nl302516v
[19] Yu N F, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(12): 6328-6333. doi:  10.1021/nl303445u
[20] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves [J]. Nature Materials, 2012, 11(5): 426-431. doi:  10.1038/nmat3292
[21] Chen C, Song W G, Chen J W, et al. Spectral tomographic imaging with aplanatic metalens [J]. Light-Science & Applications, 2019, 8(6): 990-997. doi:  10.1038/s41377-019-0208-0
[22] Wang S M, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8(1): 187. doi:  10.1038/s41467-017-00166-7
[23] Lin R J, Su V C, Wang S M, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi:  10.1038/s41565-018-0347-0
[24] Pu M, Li X, Ma X, et al. Catenary optics for achromatic generation of perfect optical angular momentum [J]. Science Advances, 2015, 1(9): 1-7. doi:  10.1126/sciadv.1500396
[25] Cheng H, Liu Z C, Chen S Q, et al. Emergent functionality and controllability in few-layer metasurfaces [J]. Advanced Materials, 2015, 27(36): 5410-5421. doi:  10.1002/adma.201501506
[26] Liu Z C, Li Z C, Liu Z, et al. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces [J]. Advanced Functional Materials, 2015, 25(34): 5428-5434. doi:  10.1002/adfm.201502046
[27] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi:  10.1038/nnano.2015.2
[28] Yang Y M, Wang W Y, Moitra P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation [J]. Nano Letters, 2014, 14(3): 1394-1399. doi:  10.1021/nl4044482
[29] Lin Dianmin, Fan Pengyu, Erez Hasman, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
[30] Kamali S M, Arbabi E, Arbabi A, et al. A review of dielectric optical metasurfaces for wavefront control [J]. Nanophotonics, 2018, 7(6): 1041-1068. doi:  10.1515/nanoph-2017-0129
[31] Zhang F, Pu M B, Li X, et al. All‐dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions [J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi:  10.1002/adfm.201704295
[32] Liu W W, Li Z C, Li Z, et al. Energy‐tailorable spin‐selective multifunctional metasurfaces with full fourier components [J]. Advanced Materials, 2019, 31(32): 1901729.
[33] Li S Q, Li X Y, Wang G X, et al. Multidimensional manipulation of photonic spin hall effect with a single‐layer dielectric metasurface [J]. Advanced Optical Materials, 2019, 7(5): 1801365. doi:  10.1002/adom.201801365
[34] Feng H, Li Q T, Wan W P, et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram [J]. ACS Photonics, 2019, 6(11): 2910-2916. doi:  10.1021/acsphotonics.9b01017
[35] Fan Q B, Zhu W Q, Liang Y Z, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible [J]. Nano Letters, 2019, 19(2): 1158-1165. doi:  10.1021/acs.nanolett.8b04571
[36] Jin L, Dong Z G, Mei S T, et al. Noninterleaved Metasurface for (26-1) Spin-and Wavelength-Encoded Holograms [J]. Nano Letters, 2018, 18(12): 8016-8024.
[37] Huang K, Deng J, Leong H S, et al. Ultraviolet metasurfaces of ≈80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting [J]. Laser & Photonics Reviews, 2019, 13(5): 1800289. doi:  10.1002/lpor.201800289
[38] Zhang C, Divitt S, Fan Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region [J]. Light-Science & Applications, 2020, 9(1): 1-10. doi:  10.1038/s41377-020-0287-y
[39] Yu N F, Capasso F. Flat optics with designer metasurfaces [J]. Nature Materials, 2014, 13(2): 139-150. doi:  10.1038/nmat3839
[40] Lalanne P, Morris G M. Antireflection behavior of silicon subwavelength periodic structures for visible light [J]. Nanotechnology, 1997, 8(2): 53-56. doi:  10.1088/0957-4484/8/2/002
[41] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings [J]. Optics Letters, 2002, 27(5): 285-287. doi:  10.1364/OL.27.000285
[42] Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings [J]. Optics Letters, 1998, 23(14): 1081-1083. doi:  10.1364/OL.23.001081
[43] Khorasaninejad M, Capasso F. Metalenses: Versatile multifunctional photonic components [J]. Science, 2017, 358(6367): 1-8. doi:  10.1126/science.aam8100
[44] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, et al. Optically resonant dielectric nanostructures [J]. Science, 2016, 354(6314): 1-8. doi:  10.1126/science.aag2472
[45] Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms [J]. Optica, 2016, 3(12): 1504-1505. doi:  10.1364/OPTICA.3.001504
[46] Devlin R C, Khorasaninejad M, Chen W T, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478. doi:  10.1073/pnas.1611740113
[47] Guo X Y, Li P, Li B J, et al. Visible-frequency broadband dielectric metahologram by random Fourier phase-only encoding [J]. Science China Physics, Mechanics & Astronomy, 2021, 64(1): 214211.
[48] Li J X, Chen S Q, Yang H F, et al. Metasurfaces: Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces [J]. Advanced Functional Materials, 2015, 25(5): 704-710. doi:  10.1002/adfm.201570036
[49] Yin X B, Ye Z L, Rho J, et al. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407. doi:  10.1126/science.1231758
[50] Clark T W, Offer R F, Franke-Arnold S, et al. Comparison of beam generation techniques using a phase only spatial light modulator [J]. Optics Express, 2016, 24(6): 6249-6264. doi:  10.1364/OE.24.006249
[51] Jiang Q, Jin G F, Cao L C. When metasurface meets hologram: principle and advances [J]. Advances in Optics and Photonics, 2019, 11(3): 518-576. doi:  10.1364/AOP.11.000518
[52] Huang K, Dong Z G, Mei S T, et al. Silicon multi‐meta‐holograms for the broadband visible light [J]. Laser & Photonics Reviews, 2016, 10(3): 500-509. doi:  10.1002/lpor.201500314
[53] Zhao W Y, Jiang H, Liu B Y, et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode [J]. Scientific Reports, 2016, 6: 30613. doi:  10.1038/srep30613
[54] Yoon G, Lee D, Nam K T, et al. Pragmatic metasurface hologram at visible wavelength: The balance between diffraction efficiency and fabrication compatibility [J]. ACS Photonics, 2018, 5(5): 1643-1647. doi:  10.1021/acsphotonics.7b01044
[55] Wang B, Dong F L, Li Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms [J]. Nano Letters, 2016, 16(8): 5235-5240. doi:  10.1021/acs.nanolett.6b02326
[56] Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series [J]. Mathematics of Computation, 1965, 19(90): 297-301. doi:  10.1090/S0025-5718-1965-0178586-1
[57] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35: 237-246.
[58] Davis J A, Cottrell D M, Campos J, et al. Encoding amplitude information onto phase-only filters [J]. Applied Optics, 1999, 38(23): 5004-5013. doi:  10.1364/AO.38.005004
[59] Mendoza-Yero O, Mínguez-Vega G, Lancis J. Encoding complex fields by using a phase-only optical element [J]. Optics Letters, 2014, 39(7): 1740-1743. doi:  10.1364/OL.39.001740
[60] Guo X Y, Zhong J Z, Li P, et al. Creation of topological vortices using Pancharatnam-Berry phase liquid crystal holographic plates [J]. Chinese Physics B, 2020, 29(4): 102-106.
[61] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light [J]. Science, 2017, 358(6365): 896-901. doi:  10.1126/science.aao5392
[62] Dutton Z, Ruostekoski J. Transfer and storage of vortex states in light and matter waves [J]. Physical Review Letters, 2004, 93(19): 193602. doi:  10.1103/PhysRevLett.93.193602
[63] Ruostekoski J, Anglin J R. Creating vortex rings and three-dimensional skyrmions in Bose-Einstein condensates [J]. Physical Review Letters, 2001, 86(18): 3934. doi:  10.1103/PhysRevLett.86.3934
[64] Guo X, Li P, Zhong J, et al. Tying polarization-switchable optical vortex knots and links via holographic all-dielectric metasurfaces [J]. Laser & Photonics Reviews, 2020, 14(3): 1900366.
[65] Zhong J Z, Qi S X, Liu S, et al. Accurate and rapid measurement of optical vortex links and knots [J]. Optics Letters, 2019, 44(15): 3849-3852. doi:  10.1364/OL.44.003849
[66] Wang L, Zhang W X, Yin H X, et al. Ultrasmall optical vortex knots generated by spin-selective metasurface holograms [J]. Advanced Optical Materials, 2019, 7(10): 1900263. doi:  10.1002/adom.201900263
[67] Leach J, Dennis M R, Courtial J, et al. Vortex knots in light [J]. New Journal of Physics, 2005, 7(1): 55. doi:  10.1088/1367-2630/7/1/055
[68] Overvig A C, Shrestha S, Malek S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase [J]. Light-Science & Applications, 2019, 8(5): 860-871. doi:  10.1038/s41377-019-0201-7
[69] Lee G Y, Yoon G, Lee S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces [J]. Nanoscale, 2018, 10(9): 4237-4245.
[70] Fan X, Li P, Guo X, et al. Axially tailored light field by means of a dielectric metalens [J]. Physical Review Applied, 2020, 14(2): 024035.
[71] Li S Q, Xu X W, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface [J]. Science, 2019, 364(6445): 1087-1090. doi:  10.1126/science.aaw6747
[72] Li J X, Yu P, Cheng H, et al. Optical polarization encoding using graphene-loaded plasmonic metasurfaces [J]. Advanced Optical Materials, 2016, 4(1): 91-98. doi:  10.1002/adom.201500398
[73] Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST [J]. Laser & Photonics Reviews, 2017, 11(5): 1700091. doi:  10.1002/lpor.201700091