[1] Liu Jiachen, Tang Xin, Ju Yonglin. Numerical simulation on the fast cooling-down process of a miniature infrared detector module [J]. Infrared and Laser Engineering, 2015, 44(3): 816-820. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.03.005
[2] Bai Wei, Zhao Chao, Liu Ming. Development and application of InSb crystal [J]. Journal of Synthetic Crystals, 2020, 49(12): 2230-2243. (in Chinese) doi:  10.3969/j.issn.1000-985X.2020.12.003
[3] Liang Jinzhi, Xu Changbin, Li Haiyan. Fabrication technology of InSb IR focal plane array [J]. Infrared, 2019, 40(6): 7-12. (in Chinese) doi:  10.3969/j.issn.1672-8785.2019.06.002
[4] Hu Weida, Li Qing, Chen Xiaoshuang, et al. Recent progress on advanced infrared photodetectors [J]. Acta Physica Sinica, 2019, 68(12): 120701. (in Chinese) doi:  10.7498/aps.68.20190281
[5] Bai Wei. Development status of InSb infrared focal plane array detectors [J]. Infrared, 2019, 40(8): 1-14. (in Chinese) doi:  10.3969/j.issn.1672-8785.2019.08.001
[6] Wang Yang, Lu Xing, Meng Chao, et al. Thermal cycle characteristic of InSb focal plane array detector [J]. Infrared and Laser Engineering, 2015, 44(12): 3701-3706. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.12.034
[7] Lei Shengqiong. Development of InSb infrared material and devices at Kunming Institute of Physics [J]. Infrared and Laser Engineering, 2007, 36(S1): 15-18. (in Chinese) doi:  10.3969/j.issn.1007-2276.2007.z1.007
[8] Wang Wen, Zhang Xiaolei, Lv Yanqiu, et al. InSb infrared focal plane arrays detector based on Si wafer [J]. Infrared and Laser Engineering, 2014, 43(5): 1359-1363. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.05.001
[9] Mu Hongshan, Dong Suo, Liang Jinzhi. Study of dead pixels in InSb IRFPA detector [J]. Infrared, 2010, 31(7): 9-13. (in Chinese) doi:  10.3969/j.issn.1672-8785.2010.07.002
[10] Meng Qingduan, Zhang Xiaoling, Lv Yanqiu, et al. Function reconsideration of indium bump in InSb IRFPAs [J]. Optical and Quantum Electronics, 2019, 51(9): 304. doi:  10.1007/s11082-019-2021-7
[11] Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches [J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102246. doi:  10.1016/j.tafmec.2019.102246
[12] Geng Hongyan, Zhou Zhou, Song Guofeng, et al. Flip chip bonding technology for IR detectors [J]. Infrared and Laser Engineering, 2014, 43(3): 722-726. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.03.010
[13] Yang D G, Ernst L J, van`t Hof C, et al. Vertical die crack stresses of flip chip induced in major package assembly processes [J]. Microelectronics Reliability, 2000, 40(8-10): 1533-1538. doi:  10.1016/S0026-2714(00)00156-6
[14] Wang L, Yang J S, Ni J X, et al. Influence of cracks in APS-TBCs on stress around TGO during thermal cycling: A numerical simulation study [J]. Surface & Coatings Technology, 2016, 285: 98-112.
[15] He Y, Moreira B E, Overson A, et al. Thermal characterization of an epoxy-based underfill material for flip chip packaging [J]. Thermochimica Acta, 2000, 357-358: 1-8. doi:  10.1016/S0040-6031(00)00357-9
[16] Meng Qingduan, Zhang Xiaoling, Zhang Liwen, et al. Structural modeling of 128× 128 InSb focal plane array detector [J]. Acta Physica Sinica, 2012, 61(19): 190701. (in Chinese) doi:  10.7498/aps.61.190701
[17] Meng Qingduan, Yu Qian, Zhang Liwen, et al. Mechanical parameters selection in InSb focal plane array detector normal direction [J]. Acta Physica Sinica, 2012, 61(22): 226103. (in Chinese) doi:  10.7498/aps.61.226103
[18] Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modified crack closure integral [J]. Engineering Fracture Mechanics, 1977, 9: 931-938. doi:  10.1016/0013-7944(77)90013-3