[1] Schibli T R, Hartl I, Yost D C. Optical frequency comb with submillihertz linewidth and more than 10 W average power [J]. Nature Photonics, 2008, 2(6): 355-359. doi:  10.1038/nphoton.2008.79
[2] Brasch V, Geiselmann M, Herr T, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation [J]. Science, 2016, 351(6271): 357-360. doi:  10.1126/science.aad4811
[3] Chen Haojing, Xiao Yunfen. Applications of integrated microresonator-based optical frequency combs in precision measurement [J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. (in Chinese) doi:  10.3788/IRLA20210560
[4] Xue Xiaoxiao, Zheng Xiaoping. Novel microwave photonic applications based on integrated microcombs (Invited) [J]. Infrared and Laser Engineering, 2021, 50(7): 20211046. (in Chinese) doi:  10.3788/IRLA20211046
[5] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546(7657): 274-279. doi:  10.1038/nature22387
[6] Fujii S, Tanaka S, Ohtsuka T, et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels [J]. Optics Express, 2022, 30(2): 1351-1364. doi:  10.1364/OE.447712
[7] Raja A S, Lange S, Karpov M, et al. Ultrafast optical circuit switching for data centers using integrated soliton microcombs [J]. Nature Communications, 2021, 12(1): 5867. doi:  10.1038/s41467-021-25841-8
[8] Corcoran B, Tan M, Xu X, et al. Ultra-dense optical data transmission over standard fibre with a single chip source [J]. Nature Communications, 2020, 11(1): 2568. doi:  10.1038/s41467-020-16265-x
[9] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb [J]. Nature, 2020, 581(7807): 164-170. doi:  10.1038/s41586-020-2239-3
[10] Lucas E, Brochard P, Bouchand R, et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator [J]. Nature Communications, 2020, 11(1): 374. doi:  10.1038/s41467-019-14059-4
[11] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs [J]. Nature Photonics, 2020, 14(8): 486-491. doi:  10.1038/s41566-020-0617-x
[12] Xu X, Tan M, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks [J]. Nature, 2021, 589(7840): 44-51. doi:  10.1038/s41586-020-03063-0
[13] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core [J]. Nature, 2021, 589(7840): 52-58. doi:  10.1038/s41586-020-03070-1
[14] Savchenkov A A, Matsko A B, Ilchenko V S, et al. Optical resonators with ten million finesse [J]. Optics Express, 2007, 15(11): 6768-6773. doi:  10.1364/OE.15.006768
[15] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photonics, 2014, 8(2): 145-152. doi:  10.1038/nphoton.2013.343
[16] Lucas E, Guo H, Jost J D, et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators [J]. Physical Review A, 2017, 95(4): 043822. doi:  10.1103/PhysRevA.95.043822
[17] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators [J]. Nature Physics, 2017, 13(1): 94-102. doi:  10.1038/nphys3893
[18] Taheri H, Matsko A B, Maleki L, et al. All-optical dissipative discrete time crystals [J]. Nature Communications, 2022, 13(1): 1-10. doi:  10.1038/s41467-021-27699-2
[19] Lucas E, Karpov M, Guo H, et al. Breathing dissipative solitons in optical microresonators [J]. Nature Communications, 2017, 8(1): 736. doi:  10.1038/s41467-017-00719-w
[20] Guo H, Lucas E, Pfeiffer M H P, et al. Intermode breather solitons in optical microresonators [J]. Physical Review X, 2017, 7(4): 041055. doi:  10.1103/PhysRevX.7.041055
[21] Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline Whispering-Gallery-mode resonator for laser stabilization [J]. Physical Review A, 2011, 84(1): 011804. doi:  10.1103/PhysRevA.84.011804
[22] Lim J, Savchenkov A A, Dale E, et al. Chasing the thermodynamical noise limit in Whispering-Gallery-mode resonators for ultrastable laser frequency stabilization [J]. Nature Communications, 2017, 8(1): 8. doi:  10.1038/s41467-017-00021-9
[23] Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes [J]. Nature Photonics, 2018, 12(11): 694-698. doi:  10.1038/s41566-018-0277-2
[24] Pavlov N G, Lihachev G, Koptyaev S, et al. Soliton dual frequency combs in crystalline microresonators [J]. Optics Letters, 2017, 42(3): 514-517. doi:  10.1364/OL.42.000514
[25] Liu G, Ilchenko V S, Su T, et al. Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators [J]. Optica, 2018, 5(2): 219-226. doi:  10.1364/OPTICA.5.000219
[26] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes [J]. Physics Letters A, 1989, 137(7-8): 393-397. doi:  10.1016/0375-9601(89)90912-2
[27] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators [J]. Optics Letters, 1996, 21(7): 453-455. doi:  10.1364/OL.21.000453
[28] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[29] Papp S B, Diddams S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb [J]. Physical Review A, 2011, 84(5): 053833. doi:  10.1103/PhysRevA.84.053833
[30] Papp S B, Del’Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb [J]. Physical Review X, 2013, 3(3): 031003. doi:  10.1103/PhysRevX.3.031003
[31] Del'Haye P, Diddams S A, Papp S B. Laser-machined ultra-high-Q microrod resonators for nonlinear optics [J]. Applied Physics Letters, 2013, 102(22): 221119. doi:  10.1063/1.4809781
[32] Zhang S, Silver J M, Del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser [J]. Optica, 2019, 6(2): 206-212. doi:  10.1364/OPTICA.6.000206
[33] Cao Q T, Liu R, Wang H, et al. Reconfigurable symmetry-broken laser in a symmetric microcavity [J]. Nature Communications, 2020, 11(1): 1-7. doi:  10.1038/s41467-019-13993-7
[34] Niu R, Wan S, Wang Z Y, et al. Perfect soliton crystals in the high-Q microrod resonator [J]. IEEE Photonics Technology Letters, 2021, 33(15): 788-791. doi:  10.1109/LPT.2021.3096645
[35] Wen Q, Cui W, Geng Y, et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing [J]. Chinese Optics Letters, 2021, 19(7): 071903. doi:  10.3788/COL202119.071903
[36] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator [J]. Nature Communications, 2021, 12(1): 6716. doi:  10.1038/s41467-021-26740-8
[37] Dumeige Y, Trebaol S, Ghişa L, et al. Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers [J]. JOSA B, 2008, 25(12): 2073-2080. doi:  10.1364/JOSAB.25.002073
[38] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities [J]. Light: Science & Applications, 2019, 8(1): 1-10.