Volume 45 Issue 2
Mar.  2016
Turn off MathJax
Article Contents

Xu Mengchun, Xu Qingshan. Effect of aerosol particle characteristic and vertical distribution on radiation[J]. Infrared and Laser Engineering, 2016, 45(2): 211002-0211002(7). doi: 10.3788/IRLA201645.0211002
Citation: Xu Mengchun, Xu Qingshan. Effect of aerosol particle characteristic and vertical distribution on radiation[J]. Infrared and Laser Engineering, 2016, 45(2): 211002-0211002(7). doi: 10.3788/IRLA201645.0211002

Effect of aerosol particle characteristic and vertical distribution on radiation

doi: 10.3788/IRLA201645.0211002
  • Received Date: 2015-06-07
  • Rev Recd Date: 2015-07-09
  • Publish Date: 2016-02-25
  • Under the given condition, reflected intensity of the top of atmosphere and transmitted intensity arriving at the ground were simulated when aerosol particles average effective radius and complex refractive imaginary part index was different, as well as the effect of aerosol vertical distribution on reflection and transmission intensity and flux of different height. The result shows that when the aerosol optical thickness is fixed, the effect of aerosol vertical distribution on reflection and transmission is great under 15 km, and the smaller aerosol particles average effective radius and complex refractive index imaginary part of aerosol particles, then the larger reflected intensity of the top of atmosphere and transmitted intensity arriving at the ground. Therefore, in order to accurately calculate atmospheric radiation, not only the aerosol optical thickness but also aerosol particles average effective radius, complex refractive index and aerosol vertical distribution should be taken into consideration, and just using the empirical value of the aerosol model will bring bigger error.
  • [1]
    [2] Xu Qingshan, Wei Heli, Rao Ruizhong, et al. Simultaneous determination of aerosol optical thickness and exponent of Junge power law from satellite measurements of two near-infrared bands over the ocean[J]. Optics Express, 2007, 15(8):5227-5236.
    [3] Li Xuebin, Huang Yinbo, Xu Chidong, et al. Measurement of refractive index for aerosol particle in Xiamen[J]. Optics and Precision Engineering, 2008, 16(10):1831-1835.(in Chinese)李学彬, 黄印博, 徐赤东, 等. 厦门地区气溶胶折射率的测量[J]. 光学精密工程, 2008, 16(10):1831-1835.
    [4]
    [5]
    [6] Wei Dongjiao, Qiu Jinhuan. Wide-band method to retrieve the imaginary part of complex refractive index of atmospheric aerosols[J]. Scientia Atmospherica Sinica, 1998, 22(5):677-685.(in Chinese)尉东胶, 邱金桓. 大气气溶胶折射率虚部的宽谱反演方法[J]. 大气科学, 1998, 22(5):677-685.
    [7] Xu Kui, Liu Tao. Laser back scattering properties of aerosol[J]. Journal of Naval University of Engineering, 2013, 25(5):108-112.(in Chinese)徐魁, 刘涛. 气溶胶粒子的激光后向散射特性[J]. 海军工程大学学报, 2013, 25(5):108-112.
    [8]
    [9] Liu Xiaochen. Numerical modeling of aerosols effects on warm cloud[D]. Beijing:Chinese Academy of Meteorological Science, 2006:23-28.(in Chinese)刘校辰. 气溶胶对暖云影响的数值模拟[D]. 北京:中国气象科学研究院, 2006:23-28.
    [10]
    [11]
    [12] Gao Taichang, Liu Lei, Li Hao. Effect of shape and character of aerosol on its near-infrared scattering characteristics[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2007, 8(3):302-306.(in Chinese)高太长, 刘磊, 李浩. 近红外波段气溶胶粒子形状和性质对散射特性的影响[J]. 解放军理工大学学报(自然科学版), 2007, 8(3):302-306.
    [13]
    [14] Li Lifang, Zhang Jilong, Li Xiao, et al. Study of the aerosol extinction characteristics in vertical direction[J]. The Journal of Light Scattering, 2013, 25(1):19-23.(in Chinese)李丽芳, 张记龙, 李晓, 等. 空间垂直方向气溶胶消光特性的研究[J]. 光散射学报, 2013, 25(1):19-23.
    [15] Huang Jianping, Huang Zhongwei, Bi Jianrong, et al. Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau[J]. Atmospheric and oceanic science Letters, 2008, 1(1):8.
    [16]
    [17]
    [18] Gordon H R. Atmospheric correction of ocean color imagery in the Earth Observing System era[J]. J Geophys Res-Atmos, 1997, 102(D14):17081-17106.
    [19]
    [20] Duforet L, Frouin R, Dubuisson P. Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing[J]. Appl Opt, 2007, 46(7):1107-1119.
    [21]
    [22] Liao H, Seinfeild J H. Radiative forcing by mineral dust aerosols:Sensitivity to key variables[J]. J Geophys Res, 1998, 103(24):31637-31645.
    [23]
    [24] Luo Yan, Wu Jian, Wang Weiguo. Study of the direct radiative forcing in east china with MODIS-GOCART assimilated aerosol optical depth[J]. Journal of Tropical Meteorology, 2006, 22(6):638-647.(in Chinese)罗燕, 吴涧, 汪卫国. 利用MODIS-GOCART气溶胶资料研究中国东部地区气溶胶直接辐射强迫[J].热带气象学报, 2006, 22(6):638-647.
    [25]
    [26] Meloni D, Sarra A D, Iotio T D, et al. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing[J]. J Quant Spectrosc Radiat Transfer, 2005, 93(4):397-413.
    [27]
    [28] Zhu A, Ramanathan V, Li F, et al. Dust plumes over the Pacific, Indian, and Atlantic oceans:Climatology and radiative impact[J]. J Geophys Res, 2007, 112(20):D16208.
    [29] Li C, Marufu L T, Dickerson R R, et al. In-situ measurements of trace gases and aerosol optical properties at a rural site in northern China during EAST-AIREIOP 2005[J]. J Geophy Res, 2007, 112:D22S04.
    [30]
    [31]
    [32] Qiu Jiuhuan. Effects of aerosol vertical inhomogeneity on the upwelling radiance and satellite remote sensing of surface reflectance[J]. Advances in Atmospheric Science, 2001, 18(4):539-553.
    [33]
    [34] Bian Jian, Qie Lili, Xu Wenqing, et al. Effect of aerosol vertical inhomogeneity on sky background brightness[J]. High Power Laser and Particle Beams, 2013, 25(5):1081-1086.(in Chinese)边健, 伽丽丽, 徐文清, 等. 气溶胶垂直非均一分布对天空背景亮度的影响[J]. 强激光与粒子束, 2013, 25(5):1081-1086.
    [35] Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric physics[M]. Beijing:Peking University Press, 2003:25-26.(in Chinese)盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京:北京大学出版社, 2003:25-26.
    [36]
    [37]
    [38] Liao K N. An Introduction to Atmospheric Radiation[M]. 2nd ed. Guo Caili, Zhou Shijian, translated. Beijing:Meteorological Press, 2004:281-310. Liao K N. 大气辐射导论[M]. 2版. 郭彩丽, 周诗健, 译. 北京:气象出版社, 2004:281-310.
    [39] Dehann J F, Bosma P B, Hovenier J W. The adding method for multiple-scattering calculations of polarized-light[J]. Astron Astrophys, 1987, 183(2):371-391.
    [40]
    [41] Li Jingzhen. Optical Manual[M]. Xi'an:Shaanxi Science and Technology Publishing House, 2010:1753.(in Chinese)李景镇. 光学手册[M]. 西安:陕西科学技术出版社, 2010:1753.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(485) PDF downloads(204) Cited by()

Related
Proportional views

Effect of aerosol particle characteristic and vertical distribution on radiation

doi: 10.3788/IRLA201645.0211002
  • 1. Key Laboratory of Atmospheric Composition and Optical Radiation,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;
  • 2. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Under the given condition, reflected intensity of the top of atmosphere and transmitted intensity arriving at the ground were simulated when aerosol particles average effective radius and complex refractive imaginary part index was different, as well as the effect of aerosol vertical distribution on reflection and transmission intensity and flux of different height. The result shows that when the aerosol optical thickness is fixed, the effect of aerosol vertical distribution on reflection and transmission is great under 15 km, and the smaller aerosol particles average effective radius and complex refractive index imaginary part of aerosol particles, then the larger reflected intensity of the top of atmosphere and transmitted intensity arriving at the ground. Therefore, in order to accurately calculate atmospheric radiation, not only the aerosol optical thickness but also aerosol particles average effective radius, complex refractive index and aerosol vertical distribution should be taken into consideration, and just using the empirical value of the aerosol model will bring bigger error.

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return