Volume 47 Issue 1
Jan.  2018
Turn off MathJax
Article Contents

Jin Kai, Wei Kai, Li Min, Cheng Feng, Bo Yong, Zuo Junwei, Yao Ji, Bian Qi, Feng Lu, Xue Xianghui, Cheng Xuewu, Qian Xianmei, Angel Otarola, Zhang Yudong. Theoretical and experimental study on photometry of a sodium laser guide star[J]. Infrared and Laser Engineering, 2018, 47(1): 106005-0106005(9). doi: 10.3788/IRLA201847.0106005
Citation: Jin Kai, Wei Kai, Li Min, Cheng Feng, Bo Yong, Zuo Junwei, Yao Ji, Bian Qi, Feng Lu, Xue Xianghui, Cheng Xuewu, Qian Xianmei, Angel Otarola, Zhang Yudong. Theoretical and experimental study on photometry of a sodium laser guide star[J]. Infrared and Laser Engineering, 2018, 47(1): 106005-0106005(9). doi: 10.3788/IRLA201847.0106005

Theoretical and experimental study on photometry of a sodium laser guide star

doi: 10.3788/IRLA201847.0106005
  • Received Date: 2017-06-05
  • Rev Recd Date: 2017-08-03
  • Publish Date: 2018-01-25
  • Coupling efficiency between the sodium laser and sodium atoms in the mesosphere is one of the most important parameters for the sodium laser guide star system. A photometry system of the sodium beacon had been built on the 1.8-meter telescope at Lijiang Observatory, Yunnan Province, to measure the brightness of the beacon and coupling efficiency of the laser. The system consisted several parts:sodium laser, beam transfer optics and laser launch telescope, receiver telescope, atmospheric coherence length measuring instrument, and ground-based sodium lidar. Measurements of the sodium beacon on different output power, polarization status and central wavelength, excited by the 20 W class quasi-continuous wave sodium laser of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences had been carried out Since 2011. The apparent full width with half maximum of the beacon spot could be as small as 3', or 1.3 meter at 90 km altitude. Detail of calculating the returned photons had been presented. Taking into account the transmission through astronomical V-band filter and quantum efficiency of the CCD camera, the corrected brightness of the sodium beacon produced by 19 Watts of circular polarized light was equivalent to a 7.4-V-magnitude natural star, or 9.55106 photonss-1m-2 on the top of the atmosphere.
  • [1] Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. Oxford:Oxford University Press, 1998.
    [2] Rousset G, Fontanella J C, Kern P, et al. First diffraction-limited astronomical images with adaptive optics[J]. Astronomy and Astrophysics, 1990, 230:L29-L32.
    [3] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy[J]. Nature, 1987, 328(6127):229-231.
    [4] Greenwood D P, Primmerman C A. Adaptive optics research at Lincoln Laboratory[J]. Lincoln Laboratory Journal, 1992, 5:3-24.
    [5] Fugate R Q, Spinhirne J M, Moroney J F, et al. Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range[J]. JOSA A, 1994, 11(1):310-324.
    [6] Boyer C, Ellerbroek B, Gilles L, et al. The TMT laser guide star facility[C]//1st AO4ELT Conference-Adaptive Optics for Extremely Large Telescopes, EDP Sciences, 2010:04004.
    [7] Primmerman C A, Murphy D V. Compensation of atmospheric optical distortion using a synthetic beacon[J]. Nature, 1991, 353(6340):141.
    [8] Olivier S S, An J R, Avicola K, et al. Performance of laser guide star adaptive optics at Lick Observatory[C]//SPIE's 1995 International Symposium on Optical Science, Engineering and Instrumentation, 1995:26-37.
    [9] Gavel D, Ammons M, Bauman B, et al. Visible light laser guidestar experimental system(Villages):on-sky tests of new technologies for visible wavelength all-sky coverage adaptive optics systems[C]//SPIE Astronomical Telescopes and Instrumentation, 2008, 7105:70150G.
    [10] Jeys T H. Development of a mesospheric sodium laser beacon for atmospheric adaptive optics[J]. Lincoln Laboratory Journal, 1991, 4(2):133-150.
    [11] Velur V, Kibblewhite E J, Dekany R G, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[C]//SPIE Astronomical Telescopes and Instrumentation, 2004:1033-1040.
    [12] Saito N, Akagawa K, Kato M, et al. Development of all-solid-state coherent 589 nm light source:toward the realization of sodium lidar and laser guide star adaptive optics[C]//Asia-Pacific Remote Sensing Symposium, 2006:64091H.
    [13] Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[C]//SPIE Astronomical Telescopes and Instrumentation, 2008, 7105:70150N.
    [14] Wang P Y, Xie S Y, Bo Y, et al. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9):094208.
    [15] Calia D B, Hackenberg W, Chernikov S, et al. AFIRE:fiber Raman laser for laser guide star adaptive optics[C]//SPIE Astronomical Telescopes and Instrumentation, 2006, 6272:62721M.
    [16] Feng Y, Calia D B, Hackenberg W, et al. Design of a narrow band 589 nm laser by direct Raman shift in single mode fiber[C]//SPIE Astronomical Telescopes and Instrumentation, 2006, 6272:62724A.
    [17] Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21):19021-19026.
    [18] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser Photonics Reviews, 2014, 8(6):889-895.
    [19] Milonni P W, Thode L E. Theory of mesospheric sodium fluorescence excited by pulse trains[J]. Applied Optics, 1992, 31(6):785-800.
    [20] Milonni P W, Fugate R Q, Telle J M. Analysis of measured photon returns from sodium beacons[J]. JOSA A, 1998, 15(1):217-233.
    [21] Milonni P W, Fearn H, Telle J M, et al. Theory of continuous-wave excitation of the sodium beacon[J]. JOSA A, 1999, 16(10):2555-2566.
    [22] Kibblewhite E. Calculation of returns from sodium beacons for different types of laser[C]//SPIE Astronomical Telescopes and Instrumentation, 2008, 7015:70150M.
    [23] Holzlhner R, Rochester S M, Calia D B, et al. Optimization of cw sodium laser guide star efficiency[J]. Astronomy Astrophysics, 2010, 510:A20.
    [24] Rochester S M, Otarola A, Boyer C, et al. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project[J]. JOSA B, 2012, 29(8):2176-2188.
    [25] Jeys T H, Kibblewhite E, Heinrichs R M, et al. Observation of optical pumping of mesospheric sodium[J]. Optics Letters, 1992, 17(16):1143-1145.
    [26] Drummond J, Telle J, Denman C, et al. Photometry of a sodium laser guide star at the Starfire Optical Range[J]. Publications of the Astronomical Society of the Pacific, 2004, 116(817):278-290.
    [27] Drummond J, Telle J, Denman C, et al. Photometry of a sodium laser guide star from the Starfire Optical Range. Ⅱ. Compensating the pump beam[J]. Publications of the Astronomical Society of the Pacific, 2004, 116(824):952-960.
    [28] Calia D B, Guidolin I, Friedenauer A, et al. The ESO transportable LGS Unit for measurements of the LGS photon return and other experiments[C]//SPIE Astronomical Telescopes and Instrumentation, 2012, 8450:84501R.
    [29] Wei K, Bo Y, Xue X, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]//SPIE Astronomical Telescopes and Instrumentation, 2012, 8447:84471R.
    [30] Liu Jie, Wang Jianli, Lv Tianyu, et al. Research on the calculation method of sodium laser guide star magnitude[J]. Scientia Sinica:Physica, Mechanica Astronomical, 2013, 43(3):318-323. (in Chinese)刘杰, 王建立, 吕天宇, 等. 钠激光导星星等计算方法研究[J]. 中国科学:物理学, 力学, 天文学, 2013, 43(3):318-323.
    [31] Wang Feng, Chen Tianjiang, Luo Zhongxiang, et al. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser[J]. Acta Physica Sinica, 2014, 63(1):014208. (in Chinese)王锋, 陈天江, 雒仲祥, 等. 基于长脉冲光源的钠信标回光特性实验研究[J]. 物理学报, 2014, 63(1):014208.
    [32] Xu Zuyan, Bo Yong, Peng Qinjun, et al. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1):0101001. (in Chinese)许祖彦, 薄勇, 彭钦军, 等. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1):0101001.
    [33] Yu Longkun, Wu Yi, Hou Zaihong, et al. Study on the measurement of coherence length by differential image motion monitor[J]. Acta Optica Sinica, 2013, 33(12):1201004. (in Chinese)于龙昆, 吴毅, 侯再红, 等. 利用差分像运动监测仪法测大气相干长度的研究[J]. 光学学报, 2013, 33(12):1201004.
    [34] Yu Longkun, Shen Hong, Jing Xu, et al. Study on the measurement of isoplanatic angle using stellar scintillation[J]Acta Optica Sinica, 2014, 34(3):0301001. (in Chinese)于龙昆, 沈红, 靖旭, 等. 利用恒星闪烁测量等晕角的研究[J]. 光学学报, 2014, 34(3):0301001.
    [35] Gao Q, Chu X, Xue X, et al. Lidar observations of thermospheric Na layers up to 170 km with a descending tidal phase at Lijiang (26.7N, 100.0E), China[J]. Journal of Geophysical Research:Space Physics, 2015, 120(10):9213-9220.
    [36] Bessell M S. UBVRI photometry Ⅱ:the Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry[J]. Publications of the Astronomical Society of the Pacific, 1979, 91(543):589.
    [37] Feng L, Shen Z, Xue S, et al. A sodium laser guide star coupling efficiency measurement method[J]. Research in Astronomy and Astrophysics, 2016, 9(16):144.
    [38] Otarola A, Hickson P, Gagne R, et al. On-sky tests of a high-power pulsed laser for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2016, 5(1):1650001.
    [39] Milone E F F, Sterken C. Astronomical Photometry:Past, Present, and Future[M]. New York:Springer Science Business Media, 2011.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(553) PDF downloads(95) Cited by()

Related
Proportional views

Theoretical and experimental study on photometry of a sodium laser guide star

doi: 10.3788/IRLA201847.0106005
  • 1. Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu 610209,China;
  • 2. Laboratory on Adaptive Optics,Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China;
  • 3. Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China;
  • 4. National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100012,China;
  • 5. University of Science and Technology of China,Hefei 230026,China;
  • 6. Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China;
  • 7. Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Hefei 230031,China;
  • 8. Thirty Meter Telescope Observatory,Pasadena,CA. 91107,USA;
  • 9. University of Chinese Academy of Sciences,Beijing 100049,China

Abstract: Coupling efficiency between the sodium laser and sodium atoms in the mesosphere is one of the most important parameters for the sodium laser guide star system. A photometry system of the sodium beacon had been built on the 1.8-meter telescope at Lijiang Observatory, Yunnan Province, to measure the brightness of the beacon and coupling efficiency of the laser. The system consisted several parts:sodium laser, beam transfer optics and laser launch telescope, receiver telescope, atmospheric coherence length measuring instrument, and ground-based sodium lidar. Measurements of the sodium beacon on different output power, polarization status and central wavelength, excited by the 20 W class quasi-continuous wave sodium laser of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences had been carried out Since 2011. The apparent full width with half maximum of the beacon spot could be as small as 3', or 1.3 meter at 90 km altitude. Detail of calculating the returned photons had been presented. Taking into account the transmission through astronomical V-band filter and quantum efficiency of the CCD camera, the corrected brightness of the sodium beacon produced by 19 Watts of circular polarized light was equivalent to a 7.4-V-magnitude natural star, or 9.55106 photonss-1m-2 on the top of the atmosphere.

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return