Volume 47 Issue 1
Jan.  2018
Turn off MathJax
Article Contents

Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002
Citation: Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002-0121002(11). doi: 10.3788/IRLA201847.0121002

Coupling effect of bright and dark modes in THz metamaterials

doi: 10.3788/IRLA201847.0121002
  • Received Date: 2017-06-05
  • Rev Recd Date: 2017-08-03
  • Publish Date: 2018-01-25
  • The coupling mechanism of bright and dark modes in metamaterials have got enormous attention after the vivid mimicking of electromagnetically induced transparency(EIT) with plasmonic metamaterials. The research progress based on the coupling effects of bright and dark modes over the past few years was reviewed, including the EIT by planar metamaterials, the EIT effect with stereo metamaterials, electromagnetically induced absorption(EIA) from vertically coupling of bright and dark modes and asymmetric excitation of surface wave. The inner mode-coupling mechanism in each unit cell which consisted of the metamaterial determined the far-field and near-field responses. These different coupling mechanisms had important promising value in the designing of functional devices, like optical switch, slow-light devices, sensitive optical sensor and on-chip optical system.
  • [1] Pendry J B. Negative refraction makes a perfect lens[J]. Phys Rev Lett, 2000, 85(18):3966-3969.
    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79.
    [3] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials[J]. Phys Rev Lett, 2005, 95(13):137404.
    [4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721):534-537.
    [5] Zhang S, Xiong Y, Bartal G, et al. Magnetized plasma for reconfigurable subdiffraction imaging[J]. Phys Rev Lett, 2011, 106(24):243901.
    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781):1780-1782.
    [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980.
    [8] Li J, Pendry J B. Hiding under the carpet:a new strategy for cloaking[J]. Phys Rev Lett, 2008, 101(20):203901.
    [9] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976):337-339.
    [10] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime:design, fabrication and characterization[J]. Opt Express, 2008, 16(10):7181-7188.
    [11] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett, 2010, 10(7):2342-2348.
    [12] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2:517.
    [13] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Opt Lett, 2012, 37(11):2133-2135.
    [14] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces[J]. Phys Rev B, 2013, 87(20):205112.
    [15] Kang M, Liu F, Li T F, et al. Polarization-independent coherent perfect absorption by a dipole-like metasurface[J]. Opt Lett, 2013, 38(16):3086-3088.
    [16] Yue W, Wang Z, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016, 11(6):1557-1563.
    [17] Hu F, Xu N, Wang W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. J Micromech Microeng, 2016, 26(2):025006.
    [18] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Phys Rev Lett, 2008, 101(4):047401.
    [19] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency[J]. Phys Rev Lett, 2008, 101(25):253903.
    [20] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Phys Rev Lett, 2009, 102(5):053901.
    [21] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nat Mater, 2009, 8(9):758-762.
    [22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
    [23] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Lett, 2012, 12(3):1702-1706.
    [24] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Adv Mater, 2013, 25(33):4567-4572.
    [25] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Adv Mater, 2014, 26(29):5031-5036.
    [26] Radko I P, Volkov V S, Beermann J. et al. Plasmonic metasurfaces for waveguiding and field enhancement[J]. Laser Photon Rev, 2009, 3(6):575-590.
    [27] Zhao C, Zhang J. Plasmonic demultiplexer and guiding[J]. ACS Nano, 2010, 4(11):6433-6438.
    [28] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler[J]. Nano Lett, 2011, 11(7):2693-2698.
    [29] Huang L, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light:Science Application, 2013, 2(3):e70.
    [30] Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures[J]. EPJ Appl Metamat, 2014, 1:6-12.
    [31] Wintz D, Genevet P, Ambrosio A, et al. Holographic metalens for switchable focusing of surface plasmons[J]. Nano Lett, 2015, 15(5):3585-3589.
    [32] Liu J, Gao Y, Ran L, et al. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light[J]. Appl Phys Lett, 2015, 106(1):013116.
    [33] Zou C, Withayachumnankul W, Shadrivov I V, et al. Directional excitation of surface plasmons by dielectric resonators[J]. Phys Rev B, 2015, 91(8):085433.
    [34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control[J]. Adv Mater, 2015, 27(44):7123-7129.
    [35] Xu Q, Zhang X, Xu Y, et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons[J]. Sci Rep, 2016, 6:37861.
    [36] Zhou J, Koschny T, Soukoulis C M. Magnetic and electric excitations in split ring resonators[J]. Opt Express, 2007, 15(26):17881-17890.
    [37] Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials[J]. Appl Phys Lett, 2009, 94(2):021116.
    [38] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Appl Phys Lett, 2010, 97(19):191906.
    [39] Wu P C, Hsu W L, Chen W T, et al. Plasmon coupling in vertical split-ring resonator metamolecules[J]. Sci Rep, 2015, 5:9726.
    [40] Manjappa M, Srivastava Y K, Singh R. Lattice-induced transparency in planar metamaterials[J]. Phys Rev B, 2016, 94(16):161103.
    [41] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Opt Express, 2009, 17(17):15372-15380.
    [42] Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials[J]. Opt Mater Express, 2011, 1(3):391-399.
    [43] Taubert R, Hentschel M, Kstel J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Lett, 2012, 12(3):1367-1371.
    [44] Verslegers L, Yu Z, Ruan Z, et al. From electromagnetically induced transparency to superscattering with a single structure:a coupled-mode theory for doubly resonant structures[J]. Phys Rev Lett, 2012, 108(8):083902.
    [45] Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials:the radiating two-oscillator model and its experimental confirmation[J]. Phys Rev Lett, 2012, 109(18):187401.
    [46] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems[J]. Phys Rev A, 2013, 87(3):031802.
    [47] Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localezed surface plasmons[J]. Opt Express, 2014, 22(13):15710-15717.
    [48] Chen L, Wei Y M, Zang X F, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies[J]. Sci Rep, 2016, 6:22027.
    [49] Zhang X, Xu Q, Li Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Sci Adv, 2016, 2(2):e1501142.
    [50] Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Appl Phys Lett, 2012, 100(13):131101.
    [51] Liang D, Zhang H, Gu J, et al. Plasmonic analogue of electromagneticlly induced transparency in stereo metamaterials[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4):1-7.
    [52] Zhang X, Xu N, Qu K, et al. Electromagnetically induced absorption in a three-resonator metasurface system[J]. Sci Rep, 2015, 5:10737.
    [53] Boiler K J, Imamo?lu A, Harris S E. Observation of electromagnetically induced transparency[J]. Phys Rev Lett, 1991, 66(20):2593-2596.
    [54] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3:1151.
    [55] Wu P C, Chen W T, Yang K Y, et al. Magnetic plasmon induced transparency in three-dimensional metamolecules[J]. Nanophotonics, 2012, 1(2):131-138.
    [56] Yang Y M, Kravchenko I I, Briggs D, et al. All dielectric metasurface analogue of electromagnetically induced transparency[J]. Nat Commun, 2014, 5:5753.
    [57] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010):1510-1512.
    [58] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515.
    [59] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2):023901.
    [60] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830.
    [61] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry[J]. Phys Today, 2008, 61(5):44-50.
    [62] Sorger V J, Oulton R F, Ma R M, et al. Toward integrated plasmonic circuits[J]. MRS Bulletin, 2012, 37(8):728-738.
    [63] Fang Y, Sun M. Nanoplasmonic waveguides:towards applications in integrated nanophotonic circuits[J]. Light:Science Application, 2015, 4(6):e294.
    [64] Xu Y, Zhang X, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces[J]. Appl Phys Lett, 2015, 107(2):021105.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(574) PDF downloads(123) Cited by()

Related
Proportional views

Coupling effect of bright and dark modes in THz metamaterials

doi: 10.3788/IRLA201847.0121002
  • 1. School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541000,China;
  • 2. Center for THz Waves,College of Precision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China;
  • 3. Guangxi Key Laboratory of Optoelectronics Information Processing,Guilin 541000,China

Abstract: The coupling mechanism of bright and dark modes in metamaterials have got enormous attention after the vivid mimicking of electromagnetically induced transparency(EIT) with plasmonic metamaterials. The research progress based on the coupling effects of bright and dark modes over the past few years was reviewed, including the EIT by planar metamaterials, the EIT effect with stereo metamaterials, electromagnetically induced absorption(EIA) from vertically coupling of bright and dark modes and asymmetric excitation of surface wave. The inner mode-coupling mechanism in each unit cell which consisted of the metamaterial determined the far-field and near-field responses. These different coupling mechanisms had important promising value in the designing of functional devices, like optical switch, slow-light devices, sensitive optical sensor and on-chip optical system.

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return