Volume 47 Issue 3
Apr.  2018
Turn off MathJax
Article Contents

Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002
Citation: Zheng Yongchao, Wang Yuzhao, Yue Chunyu. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 302002-0302002(14). doi: 10.3788/IRLA201847.0302002

Technical and application development study of space-borne atmospheric environment observation lidar

doi: 10.3788/IRLA201847.0302002
  • Received Date: 2017-10-05
  • Rev Recd Date: 2017-11-03
  • Publish Date: 2018-03-25
  • The applications, configure and technique developments of three main atmospheric environment observation targets(cloud-aerosol, wind field, and atmospheric molecule) were analyzed, and the characteristics and development trend of space-borne atmospheric environment observation lidar were summarized, based on the study of detection principle, technical system, system configure, application state, application scope and constraint condition, etc. Space-borne atmospheric environment observation lidar payloads should be designed according to scientific mission, application requirements and technical characteristics, using the advantages of space-borne lidar, and on the basis, the development trend and research focus of space-borne atmospheric environment observation technology and application were prospected.
  • [1] Liu Bingyi, Zhuang Quanfeng, Qin Shengguang, et al. Aerosol classification method based on high spectral resolution lidar[J]. Infrared and Laser Engineering, 2017, 46(4):0411001. (in Chinese)刘秉义, 庄全风, 秦胜光, 等. 基于高光谱分辨率激光雷达的气溶胶分类方法研究[J]. 红外与激光工程, 2017, 46(4):0411001.
    [2] Huang Jian, Hu Shunxing, Cao Kaifa, et al. Remote sensing system for vertical profiles of atmospheric CO2[J]. Infrared and Laser Engineering, 2016, 45(4):0417004. (in Chinese)黄见, 胡顺星, 曹开法, 等. 可用于探测大气CO2垂直廓线的无线传感系统[J]. 红外与激光工程, 2016, 45(4):0417004.
    [3] Hui Wen, Huang Fuxiang, Guo Qiang. Combined application of lightning detection data from satellite and ground-based observations[J]. Optics and Precision Engineering, 2018, 26(1):218-229. (in Chinese)惠雯, 黄富祥, 郭强. 卫星与地基闪电探测资料在闪电活动研究中的综合应用[J]. 光学精密工程, 2018, 26(1):218-229.
    [4] Fu Chuanbo, Dan Li, Tang Jiaxiang, et al. Temporal and spatial characteristics of haze days and their relations with climatic factor during 1960~2013 over South China[J]. China Environmental Science, 2016, 36(5):1313-1322. (in Chinese)符传博, 丹利, 唐家翔, 等. 1960~2013年华南地区霾污染的时空变化及其与关键气候因子的关系[J]. 中国环境科学, 2016, 36(5):1313-1322.
    [5] Liu Dong, Liu Qun, Bai Jian, et al. Data processing algorithms of the spac-borne lidar CALIOP:a review[J]. Infrared and Laser Engineering, 2017, 46(12):1202001. (in Chinese)刘东, 刘群, 白剑, 等. 星载激光雷达CALIOP数据处理算法概述[J]. 红外与激光工程, 2017, 46(12):1202001.
    [6] Wang Guizhi, Gu Saiju, Chen Jibo. Assessment of the indirect economic loss caused by heavy haze in Beijing based on input-output model[J]. Environmental Engineering, 2016, 34(1):17-19. (in Chinese)王桂芝,顾赛菊, 陈继波.基于投入产出模型的北京市雾霾间接经济损失评估[J]. 环境工程, 2016, 34(1):17-19.
    [7] Ren Fumin, Gao Hui, Liu Lvliu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40(7):860-874. (in Chinese)任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40(7):860-874.
    [8] Li Qingquan, Sun Chenghu, Yuan Yuan, et al. Major advances of China climate monitoring and diagnosis operation in recent 20 years[J]. Journal of Applied Meteorological Science, 2013, 24(6):666-676. (in Chinese)李清泉, 孙丞虎, 袁媛, 等. 近20年我国气候监测诊断业务技术的主要进展[J]. 应用气象学报, 2013, 24(6):666-676.
    [9] Xiao Ziniu. Advances of the short range climate monitoring and prediction in China[J]. Meteorological Monthly, 2010, 36(7):21-25. (in Chinese)肖子牛. 我国短期气候监测预测业务进展[J].气象, 2010, 36(7):21-25.
    [10] Claus Weitkamp. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere[M]. New York:Springer, 2005:1-18.
    [11] Takashi Fujii, Tetsuo Fukuchi. Laser Remote Sensing[M]. Boca Raton:CRC Press, 2005:1-36.
    [12] Winker D M, Couch R H, Mccormick M P. An overview of LITE:NASA's lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2):164-180.
    [13] Ansmann A, Mller D, Wandinger U, et al. Lidar profiling of aerosol optical and microphysical properties from space:overview, review, and outlook[C]//First International Conference on Remote Sensing and Geoinformation of the Environment, Proc of SPIE, 2013, 8795:879502.
    [14] Guennadii G Matvienko. Modern concept of a spaceborne lidar[C]//Sixth International Symposium on Atmospheric and Ocean Optics, SPIE, 2001, 3983:250-259.
    [15] Schutz B E, Zwally H J, Shuman C A. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32:L21S01.
    [16] Paoli F, Blouvac J. CALIPSO:a small satellite in low earth orbit for the study of the clouds and aerosols[C]//Proceedings of the IAC, 2005:IAC-05-B5.2.02.
    [17] Bzy J -L, Leibrandt W, Hlire A, et al. System, spacecraft, and instrument concepts for the ESA Earth Explorer EarthCARE Mission[C]//Proceedings of 11th SPIE International Symposium on Remote Sensing, 2005, 5978:19-22.
    [18] David Starr. NASA's Aerosol-Cloud-Ecosystems (ACE) mission[C]//Hyperspectral Imaging Sounding of the Environment, 2011.
    [19] Ti Chuang, Patrick Burns, Walters E B, et al. Space-borne, multi-wavelength solid-state lasers for NASA's cloud aerosol transport system for international space station[C]//SPIE, 2013, 8599:85990N-1-14.
    [20] Sun Qiang, Fan Xuehua, Xia Xiang'ao. Observation and analysis of aerosol vertical distribution characteristics in north china plain[J]. Meteorological and Environmental Sciences, 2016, 39(1):73-79. (in Chinese)孙强, 范学花, 夏祥鳌. 华北地区气溶胶垂直分布特征的观测与分析[J]. 气象与环境科学, 2016, 39(1):73-79.
    [21] Wang Chaojie, Wang Bo, Guo Huinan, et al. Online measurement of atmospheric density based on space vehicle platform[J]. Optics and Precision Engineering, 2017, 25(1):15-20. (in Chinese)王超杰, 王博, 郭惠楠, 等. 空间飞行器平台大气密度的在轨测量[J]. 光学精密工程, 2017, 25(1):15-20.
    [22] Lu Xianyang, Li Xuebin, Qin Wubin, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7):1697-1704. (in Chinese)鲁先洋, 李学彬, 秦武斌, 等. 微脉冲激光雷达反演气溶胶的水平分布[J]. 光学精密工程, 2017, 25(7):1697-1704.
    [23] Jiang Xuegong, Chen Shoujun, Yun Jingbo. Analysis on characteristics of vertical structure of sand and dust during dust storm process based on CALIPSO data[J]. Meteorological Monthly, 2014, 40(3):269-279. (in Chinese)姜学恭, 陈受钧, 云静波. 基于CALIPSO资料的沙尘暴过程沙尘垂直结构特征分析[J]. 气象, 2014, 40(3):269-279.
    [24] Winker D, Vaughan M, Hunt B. The CALIPSO mission and initial results from CLIOP[C]//Lidar Remote Sensing for Environmental MonitoringVⅡ, 2006, 6409:640902.
    [25] Rodier S, Zhai P, Josset D, et al. CALIPSO lidar measurments for ocean sub-surface studies[C]//34th International Symposium on Remote Sensing of Environment, 2011.
    [26] James H Churnside, Brandi J McCarty, Lu Xiaomei.Subsurface ocean signals from an orbiting polarization lidar[J]. Remote Sensing, 2013, 5(7):3457-3475.
    [27] Behrenfeld M J, Hu Yongxiang, Hostetler C A, et al. Space-borne lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 2013, 40(16):4355-4630.
    [28] Kelly M Brunt, Sinad L Farrell, Vanessa M Escobar. ICESat-2:A next generation laser altimeter for space-borne determination of surface elevation[C]//93rd American Meteorological Society Annual Meeting, 2013.
    [29] David J Harding. NASA's Lidar measurements of the Earth's surface from space[C]//Proceedings of IGARSS (International Geoscience and Remote Sensing Symposium), 2012.
    [30] Charon Birkett, Markus T, Neumann T. The ICESat-2 Mission-laser altimetry of ice, clouds and land elevation and also ocean, coastal, and continental waters[C]//OSTM SWT (Science Working Team), 2011.
    [31] Zeromskis E, Wandinger U, Althausen D, et al. Coherent Doppler lidar for studies of transport and mixing processes in the lower atmosphere[C]//22nd International Lidar Conference, 2004, 561:123-125.
    [32] Kameyama S, Ando T, Asaka K, et al. Compact all fiber pulsed coherent doppler lidar system for wind sensing[J]. Appl Opt, 2007, 46(11):1953-1962.
    [33] World Meteorological Organization. Preliminary statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas[R]. WMO/TD, 1998.
    [34] Kin P Chan, Dennis K Killinger. Short-pules coherent Doppler Nd:YAG lidar[J]. Optical Engineerring, 1991, 14(15):776-785.
    [35] Beranek R G, Bilbro J W, Fitzjarrald D E, et al. Laser Atmospheric Wind Sounder (LAWS)[C]//Proc SPIE, 1989, 1062:doi 10.1117/12.951882.
    [36] Baker W E, Emmitt G D, Robertson F, et al. Lidar-measured winds from space:a key component for weather and climate prediction[J]. Bull American Meteorological Society, 1995, 76(6):869-888.
    [37] National Research Council (NRC). Earth Science and Applications from Space:National Imperatives for the Next Decade and Beyond[M]. Washington DC:The National Academic Press, 2007.
    [38] Huffaker R M. Feasibility study of satellite-borne lidar global wind monitoring system[R]. NOAA Tech Memo ERL WPL-37, 1978.
    [39] Jerome Caron, Yannig Durand. Operating wavelengths optimization for a space borne lidar measuring atmospheric CO2[J]. Applied Optics, 2009, 48:5413-5422.
    [40] Caron J, Durand Y, Bezy J L, et al. Performance modeling for A-SCOPE, a space borne lidar measuring atmospheric CO2[C]//SPIE, 2009, 7479:74790E.
    [41] Ehret G, Kiemle C, Wirth M, et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar:a sensitivity analysis[J]. Applied Physics B, 2008, 90:593-608.
    [42] University of Michigan in Ann Arbor, Michigan, USA. Active Sensing of CO2 Emissions over Night 5,Days,and Sea 50 ns (ASCENDS) Mission[R]. NASA Science Definition and Planning Workshop Report, 2008:78.
    [43] James B Abshire, Haris Riris, Graham R Allan. A lidar approach to measure CO2 concentrations from space for the ASCENDS mission[C]//SPIE, 2010, 7832, 78320D:1-13.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(484) PDF downloads(233) Cited by()

Related
Proportional views

Technical and application development study of space-borne atmospheric environment observation lidar

doi: 10.3788/IRLA201847.0302002
  • 1. Beijing Institute of Space Mechanics & Electricity,Beijing 100094,China;
  • 2. Key Laboratory of Laser Information Perception,Beijing Institute of Space Technology,Beijing 100094,China

Abstract: The applications, configure and technique developments of three main atmospheric environment observation targets(cloud-aerosol, wind field, and atmospheric molecule) were analyzed, and the characteristics and development trend of space-borne atmospheric environment observation lidar were summarized, based on the study of detection principle, technical system, system configure, application state, application scope and constraint condition, etc. Space-borne atmospheric environment observation lidar payloads should be designed according to scientific mission, application requirements and technical characteristics, using the advantages of space-borne lidar, and on the basis, the development trend and research focus of space-borne atmospheric environment observation technology and application were prospected.

Reference (43)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return