Volume 50 Issue 5
May  2021
Turn off MathJax
Article Contents

Lian Yuxuan, Feng Wei, Ding Qingfeng, Zhu Yifan, Sun Jiandong, Qin Hua, Cheng Kai. 340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors[J]. Infrared and Laser Engineering, 2021, 50(5): 20210202. doi: 10.3788/IRLA20210202
Citation: Lian Yuxuan, Feng Wei, Ding Qingfeng, Zhu Yifan, Sun Jiandong, Qin Hua, Cheng Kai. 340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors[J]. Infrared and Laser Engineering, 2021, 50(5): 20210202. doi: 10.3788/IRLA20210202

340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors

doi: 10.3788/IRLA20210202
  • Received Date: 2021-04-12
  • Rev Recd Date: 2021-05-06
  • Publish Date: 2021-05-21
  • Based on the self-mixing and heterodyne mixing effects of antenna-coupled AlGaN/GaN HEMT terahertz detectors, two receiving front-ends, namely homodyne receiver and heterodyne receiver, were designed and tested in 340 GHz frequency band, respectively. The equivalent noise powers of two receivers were calculated through measuring the signal-noise ratio (SNR) of the signal and the received power. The experimental result indicates that the responsivity of detectors is about 20 mA/W for homodyne receiver, the noise equivalent power is about −64.6 dBm/Hz1/2 for homodyne receiver and −114.79 dBm/Hz for heterodyne receiver, respectively. With the same carrier power and the signal bandwidth, the SNR of the heterodyne receiver is greater than that of the homodyne receiver when the local terahertz source power is greater than −7 dBm. The heterodyne receiver exhibits excellent demodulation characteristics: a local terahertz source power above 0 dBm boosts the SNR by more than 10 dB compared with the homodyne receiver.
  • [1] Cherry S. Edholm's law of bandwidth [J]. IEEE Spectrum, 2004, 41(7): 58-60. doi:  10.1109/MSPEC.2004.1309810
    [2] Wu Qiuyu, Lin Changxing, Lu Bin, et al. A 21 km 5 Gbps real time wireless communication system at 0.14 THz[C]//2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), IEEE, 2017.
    [3] Jiang A, Cathelin A, Afshari E. A high-speed efficient 220 GHz spatial-orthogonal ASK transmitter in 130 nm SiGe BiCMOS [J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2321-2334. doi:  10.1109/JSSC.2017.2702007
    [4] Yang Dabao, Wang Junlong, Zhang Lisen, et al. 330 GHz monolithic integrated sub-harmonic mixer [J]. Infrared and Laser Engineering, 2019, 48(2): 0225001. (in Chinese) doi:  10.3788/IRLA201948.0225001
    [5] Hillger P, Grzyb J, Jain R, et al. Terahertz imaging and sensing applications with silicon-based technologies [J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(1): 1-19. doi:  10.1109/TTHZ.2018.2884852
    [6] Qin Hua, Huang Yongdan, Sun Jiandong, et al. Terahertz-wave devices based on plasmons in two-dimensional electron gas [J]. Chinese Optics, 2017, 10(1): 51-67+150. (in Chinese) doi:  10.3788/co.20171001.0051
    [7] Sun Y F, Sun J D, Zhang X Y, et al. Enhancement of terahertz coupling efficiency by improved antenna design in GaN/AlGaN high electron mobility transistor detectors [J]. Chinese Physics B, 2012, 21(10): 108504.
    [8] Tian Zhifeng, Xu Peng, Yu Yao, et al. Responsivity and noise characteristics of AlGaN/GaN-HEMT terahertz detectors at elevated temperatures [J]. Chinese Physics B, 2019, 28(5): 359-364.
    [9] Luo Muchang, Sun Jiandong, Zhang Zhipeng, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors [J]. Infrared and Laser Engineering, 2018, 47(3): 0320001. (in Chinese) doi:  10.3788/IRLA201847.0320001
    [10] Qin Hua, Sun Jiandong, He Zezhao, et al. Heterodyne detection at 216, 432, and 648 GHz based on bilayer graphene field-effect transistor with quasi-optical coupling [J]. Carbon, 2017, 121: 235-241. doi:  10.1016/j.carbon.2017.05.080
    [11] Sun Jiandong, Sun Yunfei, Zhou Yu, et al. Room temperature terahertz detectors based on HEMTs enhanced by bowtie antennas [J]. Micronanoelectronic Technology, 2011, 48(4): 215-219. (in Chinese)
    [12] Sun Jiandong, Qin Hua, Lewis R A, et al. Probing of localized terahertz self-mixing in a GaN/AIGaN field-effect transistor [J]. Applied Physics Letters, 2012, 100(17): 173513. doi:  10.1063/1.4705306
    [13] Sun Jiandong, Sun Yunfei, Wu Dongmin M, et al. High-responsivity, low-noise, room-tomperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor [J]. Applied Physics Letters, 2012, 100(1): 013506. doi:  10.1063/1.3673617
    [14] Yang Xinxin, Sun Jiandong, Qin Hua, et al. Detection and analysis of responsivity and NEP for HEMT terahertz detectors [J]. Micronanoelectronic Technology, 2013, 50(2): 69-73+99. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(436) PDF downloads(67) Cited by()

Related
Proportional views

340 GHz wireless communication receiving front-ends based on AlGaN/GaN HEMT terahertz detectors

doi: 10.3788/IRLA20210202
  • 1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • 2. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • 4. Enkris Semiconductor, Inc., Suzhou 215000, China

Abstract: Based on the self-mixing and heterodyne mixing effects of antenna-coupled AlGaN/GaN HEMT terahertz detectors, two receiving front-ends, namely homodyne receiver and heterodyne receiver, were designed and tested in 340 GHz frequency band, respectively. The equivalent noise powers of two receivers were calculated through measuring the signal-noise ratio (SNR) of the signal and the received power. The experimental result indicates that the responsivity of detectors is about 20 mA/W for homodyne receiver, the noise equivalent power is about −64.6 dBm/Hz1/2 for homodyne receiver and −114.79 dBm/Hz for heterodyne receiver, respectively. With the same carrier power and the signal bandwidth, the SNR of the heterodyne receiver is greater than that of the homodyne receiver when the local terahertz source power is greater than −7 dBm. The heterodyne receiver exhibits excellent demodulation characteristics: a local terahertz source power above 0 dBm boosts the SNR by more than 10 dB compared with the homodyne receiver.

    • 根据Edholm带宽定律,人们对于无线短距离通信的带宽需求每18个月翻一倍[1]。目前的微波通信为了增加信道容量,多采用频分复用、空分复用等方式实现。太赫兹波作为300 GHz~3 THz的电磁波,频率高于微波、毫米波频率,且在特定环境(如沙尘环境等)中衰减率低,适用于恶劣环境中的稳定、高速、短距离的无线通信。2016年中国工程物理研究院采用分谐波混频器,搭建了一套载频为140 GHz的无线通信收发系统[2];2017年密歇根大学采用BiCMOS工艺,在217 GHz频段实现了12.2 Gbps的传输速率[3];2019年,中国电子科技集团公司第十三研究所设计了一种330 GHz单片集成分谐波混频器,可作为太赫兹通信的收发前端器件[4]

      在太赫兹无线通信、雷达体制的接收机中,由于载波频率较高,经天线接收后很难直接进行放大处理,而是多通过(分谐波)混频器进行频率下转换后对基带信号进行放大处理。肖特基二极管具有较高的响应度和低等效噪声功率[5],可作为接收前端的混频探测器,在太赫兹波相干探测、通信领域和雷达中已有较为广泛的应用。除肖特基二极管外,采用片上天线耦合的AlGaN/GaN 高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)也可实现对太赫兹波的直接检波或外差混频探测。其基本工作原理是太赫兹波通过栅极与天线调控AlGaN/GaN界面处的二维电子气,在远小于太赫兹波波长的栅控区域形成自混频直流信号或外差混频的中频信号[6]。天线耦合的AlGaN/GaN HEMT太赫兹波探测器同样具有高灵敏度特性,可作为太赫兹通信和雷达探测接收机的核心器件。与肖特基势垒二极管相比,AlGaN/GaN HEMT探测器还有以下两个方面的优点:

      (1) AlGaN/GaN HEMT探测器可实现1 THz以上的探测[7],并可实现用于多波束探测的单片集成阵列。基于局域混频机理的AlGaN/GaN HEMT可采用全平面化的工艺制造,一致性高,可形成大规模阵列。肖特基势垒二极管由于寄生电学参数的限制,当频率超过1 THz时,其灵敏度快速下降。因此,肖特基势垒二极管通常需采用空气桥结构达到降低寄生电容和提高灵敏度的目的,工艺复杂,一致性低,难以实现阵列化。

      (2)与肖特基二极管探测器具有很强的温度依赖性相比,GaN的宽禁带特性使得AlGaN/GaN HEMT探测器在480 K温度以下能够保持性能相对稳定,对温度依赖性较弱[8]

      前期笔者团队利用AlGaN/GaN 太赫兹探测器实现了110~1100 GHz的自混频(直接检波)探测和焦平面成像阵列[9],并对外差混频(包括基波混频、二次谐波混频与三次谐波混频)机制进行了研究[10],但尚未具体评估其应用于太赫兹无线通信接收机的检波和混频性能。文中利用笔者团队研制的340 GHz频段AlGaN/GaN HEMT太赫兹探测器搭建直接检波式和外差混频式无线通信接收前端,在四进制幅移键控(4 Amplitude Shift-Keying, 4ASK)调制体制下进行通信试验,对接收机前端进行测试和定标。实验结果表明AlGaN/GaN HEMT太赫兹探测器具有良好的检波和混频性能。

    • 340 GHz AlGaN/GaN HEMT太赫兹探测器结构示意图与实物图分别如图1(a)1(b)所示。HEMT是电压控制型器件,栅极负电压Vg通过控制AlGaN/GaN异质结势阱深度来调节二维电子气(Two-dimensional Electron Gas,2DEG)的面密度。太赫兹波经非对称的偶极天线[11]调制2DEG沟道中电子的浓度和速度,从而产生混频电流响应:源极接地,响应信号通过漏极输出。在偶极天线的基础上,探测器采用直径为6 mm的超半球高阻硅透镜进一步提高了太赫兹波的耦合效率。AlGaN/GaN HEMT太赫兹探测器的等效电路如图1(c)所示,其中光响应电流等效为电流源,探测器工作时的内阻r即沟道电阻大小约为17 kΩ,并联寄生电容Cp小于1 pF。由于输出阻抗较高,故采用电流前置放大器(HCA-100M-50K-C)对响应信号进行放大。该电流放大器的输入阻抗为56 Ω,等效输入噪声电流(~3.8 pA/Hz1/2)大于探测器的热噪声电流(~1 pA/Hz1/2),因此是接收机噪声的主要来源。

      Figure 1.  (a) Schematic diagram of AlGaN/GaN HEMT terahertz detector; (b) Actual picture of AlGaN/GaN HEMT terahertz detector; (c) Equivalent circuit of AlGaN/GaN HEMT terahertz detector; (d) Homodyne-detection responsivity of the detector in the band of 334-343 GHz; (e) Homodyne-detection responsivity as a function of the received power

      图1(a)中过程①和过程②分别表示探测器工作在自混频模式(Homodyne mode)和外差混频模式(Heterodyne mode)下的信号传递过程。当一束频率为f1的太赫兹波照射到器件上时,非对称偶极天线接收太赫兹波并在沟道内产生自混频响应,直流响应电流正比于太赫兹波功率[12-13]。因此,利用自混频效应可检测得到被幅度调制的太赫兹波的包络信号,即基带信号。当频率分别为f1f2的太赫兹波被偶极天线接收后,探测器除产生相应的自混频响应外(直流信号),还产生外差混频信号,即频率为两束太赫兹波频率之差$\left| {{f_1} - {f_2}} \right|$中频信号,且中频功率与两束太赫兹波的功率的乘积成正比。功率较小的太赫兹波为射频太赫兹波,另一束为本振太赫兹波。通过调制射频太赫兹波的幅度(功率),使得探测器输出中频信号的幅度随射频太赫兹波功率变化,实现将基带信号从高频载波搬移(下转换)至中频载波的过程。

      将栅极电压Vg设置为−4.24 V,此时探测器表现出最佳探测性能,即信噪比最高。表征探测器的性能参数主要有响应度和噪声等效功率[14]图1(d)为在自混频模式下,探测器的响应度随频率的关系。探测器在334~343 GHz范围内平均响应度为22.6 mA/W,在频率为 335 GHz和340 GHz时响应度分别为34.5 mA/W、20.2 mA/W。在该频段内响应度变化较剧烈,主要原因是定标光路中太赫兹波干涉对探测器位置敏感从而产生了较大的太赫兹波功率定标误差。图1(e)为探测器响应度随接收载波功率的关系,当探测器接收频率为335 GHz和接收功率低于0 dBm时,探测器响应度始终大于15 mA/W,且探测器未出现饱和,因此无需考虑由于探测器饱和产生的接收信号的失真。由于具有高响应度和高动态范围,AlGaN/GaN HEMT太赫兹探测器可实现调制太赫兹波信号的解调。基于探测器的自混频响应和外差混频效应,分别搭建了检波式和外差混频式无线通信接收前端,并测试表征了通信链路的信噪比,验证该新型太赫兹探测器用于太赫兹通信的可行性。

    • 基于自混频效应的检波式太赫兹无线收发系统链路如图2所示,在自由空间中的传输距离为0.95 m。该系统主要由基带信号产生和接收模块、微波信号源、双边带混频器、340 GHz倍频链路、340 GHz AlGaN/GaN HEMT太赫兹探测器组成。该收发系统采用4ASK幅度调制及解调体制。基带信号产生0~1 V的4电平脉冲幅度调制 (Pulse Amplitude Modulation, PAM)信号,微波信号源产生频率为10.625 GHz、功率为10 dBm的正弦信号,基带信号和微波信号分别输入至双边带混频器的IF端和LO端。调制后的信号经RF端输出后,由级联倍频链路进行32倍频,最后通过喇叭天线发射至自由空间。利用一对离轴抛物面镜(OAP)实现发射-接收准直光路,到达接收机前端硅透镜的太赫兹波功率大于−20 dBm。采用AlGaN/GaN HEMT太赫兹探测器进行检波,电流前置放大器负责放大探测器的响应电流,低通滤波器抑制带外噪声。信号经放大、滤波后由模数转换模块采集,最终还原出原始信元。采用检波式接收前端,系统功耗较低,收发链路简单。检波式接收机的输出信号信噪比SNR与接收信号功率Pin的关系为:

      Figure 2.  Block diagram of homodyne transmitter-transceiver chain based on AlGaN/GaN HEMT terahertz detector

      式中:NEP+10lgB1/2为接收机在带宽为B时的总噪声;SNR为解调后信号的信噪比;NEP为接收机的等效噪声功率(信噪比为1时单位带宽内的接收功率)。采用不同带宽的低通滤波器(LPF),调节接收机带宽分别为20 MHz、50 MHz和100 MHz。比较不同接收机带宽下接收信号信噪比与接收功率的关系,如图3所示。分别对三种接收带宽下的数据进行线性拟合,得到信噪比为0 dB时的接收功率,并通过公式(1)换算出对应的NEP,结果如表1所示。直接检波式接收机的NEP几何平均值−64.6 dBm/Hz1/2

      Figure 3.  SNR of the homodyne receiver as a function of the received power with different receiver bandwidths

      Different receiver bandwidths/MHzReceiver power when SNR=0 dB/dBmNEP (homodyne receiver)/dBm·Hz−1/2
      20 −27.9 −64.4
      50 −26.0 −64.5
      100 −25.0 −65.0

      Table 1.  Extrapolated received power with SNR=0 dB and the NEP for homodyne receiver with different receiver bandwidths

      发射端倍频链路由82.5~87.5 GHz六倍频器、W波段功率放大器、165~175 GHz二倍频器和330~350 GHz二倍频器组成,经过多级倍频将微波信号倍频至太赫兹频段。接收端信号经探测器检波、电流放大器放大后(反相),与发射端基带信号保持同步,便于后续的信号处理。基带信号采用带宽为10 MHz的4PAM随机信号。当进行高阶调制时,倍频链路的强非线性导致接收端信号失真。如图4(a)所示,倍频链路强非线性导致接收信号幅度分布不均,四种均匀电平经调制、倍频、探测后,输出信号只有三种电平。通过对基带信号进行预失真补偿处理,实现了发射端倍频链路的线性化。图4(b)为补偿后发射端基带和接收端基带波形图的对比,发射-接收链路保留了良好的线性度。

      Figure 4.  (a) Transmitted and received waveforms without nonlinear compensation; (b) Transmitted and received waveforms with nonlinear compensation

    • 图5为基于AlGaN/GaN HEMT太赫兹外差混频效应的无线通信收发系统,该收发系统同样采用4ASK幅度调制及解调体制,传输距离为0.95 m。其中本振太赫兹波频率为339.94 GHz,经OAP3、分束器反射、OAP2后,通过硅透镜耦合至探测器。对于链路的发射端,频率为12.594 GHz、功率为10 dBm的微波信号源被基带信号调制后,经27倍频到340 GHz。经OAP1准直、分束器透射、OAP2汇聚和硅透镜耦合至探测器。探测器接收到的功率值在−25~−10 dBm范围内可调。探测器输出的中频信号频率为两路信号的差频60 MHz,中频功率随发射端太赫兹波功率线性变化。中频信号经过Bias-Tee、电流前置放大器和带通滤波器输出,最后由对数检波器输出至基带信号采集模块。Bias-Tee的作用是隔离了由本振太赫兹波在探测器中产生的直流分量。带通滤波器有效地消除了基带信号带宽外的噪声,提高了信号质量。

      Figure 5.  Block diagram of heterodyne transceiver system based on AlGaN/GaN HEMT terahertz detector

      本振太赫兹波链路采用了与第2节相同的32倍频链路,输出功率可达毫瓦量级,可显著提高接收信号的信噪比。太赫兹波调制发射链路采用VDI公司的27倍频链路,包括9倍频有源倍频器、340 GHz 频段3倍频器和340 GHz衰减器组成。分束器采用高阻硅片制成,透射信号与反射信号功率比约为1∶1。

      外差混频式接收机的输出信号信噪比SNR与接收信号功率Pin关系为:

      采用不同带宽的带通滤波器(BPF),使接收机带宽分别为20 MHz和40 MHz。图6为本振太赫兹信号功率为0 dBm时接收机信噪比随接收功率变化的曲线。对测试结果进行线性拟合外推得到信噪比为0 dB时的接收功率,通过公式(2)计算得到外差接收机的NEP,结果如表2所示。当带宽为20 MHz时NEP约为−114.79 dBm/Hz。带宽增加到40 MHz时,NEP增加了约3.37 dB,主要原因是总噪声的增加和滤波器衰减系数存在误差。

      Figure 6.  SNR of the heterodyne receiver as a function of the received power with different signal bandwidths

      Different receiver bandwidths/MHzReceiver power when SNR=0 dB/dBmNEP (heterodyne receiver)/dBm·Hz−1
      20−41.68−114.79
      40−35.22−111.42

      Table 2.  Extrapolated received power with SNR=0 dB and the NEP for heterodyne receiver with different receiver bandwidths

      图7为本振太赫兹信号功率为0 dBm、调制太赫兹信号功率为−11 dBm时,发射信号和探测器输出差频信号波形图。即使调制太赫兹信号功率很低,由于本振太赫兹波功率较强,输出中频信号的幅度能够很好地保留基带信号的幅度信息。

      Figure 7.  Waveforms of the base-band signal and the IF signal with a local terahertz power of 0 dBm and a signal bandwidth of 10 MHz

    • 基于AlGaN/GaN太赫兹探测器的接收机工作在外差混频模式时,噪声等效功率较低。外差混频接收机表现出比直接检波式接收机更高的灵敏度。在调制太赫兹信号功率相同(−11 dBm)、接收机带宽相同时,两种接收机的接收信号信噪比与接收机带宽的关系如图8所示。当本振太赫兹波功率为−10 dBm时,外差混频接收机的信噪比较低。这是由于本振太赫兹波功率与调制太赫兹波的功率相当。本振太赫兹波功率从−10 dBm逐步增加到−3 dBm时,接收信号的信噪比显著增加。当本振信号大于−7 dBm时,外差混频接收机的信号信噪比明显优于直接检波接收机的信噪比。当本振信号达到0 dBm时,外差混频接收的信噪比比直接检波接收机的信噪比高10 dB以上。当本振信号功率达到3 dBm时,探测器的响应度出现一定程度的饱和,接收机的信噪比只提高2 dB左右。

      Figure 8.  SNR as a function of the receiver bandwidth for the two different receivers with the same received power of −11 dBm

      根据公式(1)和(2)可知,随着接收机带宽增加,外差混频式接收机信噪比恶化程度更高。理论上,当接收机带宽大于某个值时,在同等条件下,外差混频接收机信噪比将小于直接检波接收机的信噪比。图8所示实线为两种接收机信噪比与接收功率的理论关系,其中NEP为2、3节中通过线性拟合得到的值,即分别为−64.6 dBm/Hz1/2和−114.79 dBm/Hz。当接收机带宽小于8.7 GHz时,外差混频接收机的信噪比更高。提高接收机带宽,直接检波模式理论上表现出更好的接收特性,但此时接收机信噪比仅为4.33 dB,解码的误码率增加。所以在满足最低采样信噪比(10 dB)的情况下,外差混频接收机性能始终优于检波式接收机。

      在文中所述的两种接收机中,由于AlGaN/GaN HEMT探测器的输出阻抗较高,在保证信号带宽的前提下采用了前置电流放大器。该前置电流放大器的噪声电流约为AlGaN/GaN HEMT探测器的噪声电流的4倍,即放大器的噪声使接收机信噪比降低了约12 dB。在后续的工作中,一方面可以采用噪声电流更低的放大器来提高接收机的灵敏度,另一方面可通过降低AlGaN/GaN HEMT探测器的输出阻抗使其与低噪声电压放大器相匹配从而获得更高的接收机灵敏度和传输速率。

    • 基于天线耦合AlGaN/GaN HEMT的太赫兹波自混频效应和外差混频效应,文中实现了4ASK调制体制下的340 GHz无线通信收发链路,验证了该探测器用于340 GHz直接检波式接收前端和外差混频式接收前端的可行性,为未来进一步发展适用于高速、高阶调制太赫兹通信的场效应混频器提供依据。当本振太赫兹波功率较高时,外差混频式链路表现出优良的解调特性,接收信号信噪比较高。目前,该接收前端的灵敏度主要受以下两个因素的影响:(1)探测器沟道电阻约为17 kΩ,存在与接收天线阻抗、放大器阻抗不匹配的问题,导致链路增益及带宽受限,且噪声较大;(2)由于本振太赫兹波通过准光方式与探测器耦合,光路较复杂且耦合效率低。针对上述问题,未来将可进一步改进探测器设计与工艺,减小输出阻抗使其具有更低的噪声并能与低噪声射频放大器相匹配。同时,可采用波导结构直接实现本振太赫兹波与探测器的耦合,提高本振耦合效率并使接收机前端小型化。

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return