Volume 51 Issue 4
May  2022
Turn off MathJax
Article Contents

Wang Yi, Lei Guangzhi, Yu Lidong, Zha Rongwei, Zhou Jingfeng, Bai Yang. High power laser incoherent spatial beam combining with rectangular spot[J]. Infrared and Laser Engineering, 2022, 51(4): 20210268. doi: 10.3788/IRLA20210268
Citation: Wang Yi, Lei Guangzhi, Yu Lidong, Zha Rongwei, Zhou Jingfeng, Bai Yang. High power laser incoherent spatial beam combining with rectangular spot[J]. Infrared and Laser Engineering, 2022, 51(4): 20210268. doi: 10.3788/IRLA20210268

High power laser incoherent spatial beam combining with rectangular spot

doi: 10.3788/IRLA20210268
Funds:  Key Research and Development Project in Shaanxi Province, China (2020GY-118); Serving Local Special Project of Shaanxi Provincial Department of Education, China (19JC040)
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-07-28
  • Publish Date: 2022-05-06
  • This work lays a foundation for promoting the application of incoherent spatial combining laser in laser surface heat treatment with high speed and flexible processing. 18 semiconductor laser beams at 972 nm output by the fiber were arranged in parallel according to the "matrix". By implementing beam collimation and incoherent spatial beam combination, a 10 kW combined laser beam with rectangular spot characteristics was obtained. The radius of the collimated laser beam, the distance between adjacent laser beams and the overlapping rate of the combined laser were theoretically analyzed, respectively. The structural model of the beam combiner was built using Code V software, and the spot energy distribution of the combined laser was simulated using TracePro software. Based on the above work, a 10 kW 18×1 incoherent spatial laser combiner of outputting a rectangular spot was developed. Within the combined length of 200 mm, the combined laser beam had a single rectangular spot shape. A beam combining power of 10.249 kW was achieved with a focal spot diameter of 31 mm×11 mm, a center wavelength of 972.34 nm and a linewidth of 2.27 nm.
  • [1] Siddiqui A A, Kumar D A. Recent trends in laser cladding and surface alloying [J]. Optics & Laser Technology, 2021, 134: 106619.
    [2] Zhang Lei, Xie Xianchen, Wu Yong, et al. Performance studies on laser absorbing coating [J]. Chinese Optics, 2021, 14(3): 560-565. (in Chinese) doi:  10.37188/CO.2020-0201
    [3] Lin Xingchen, Zhang Yawei, Zhu Hongbo, et al. 10 kW CW diode laser cladding source and thermal effect [J]. Chinese Optics, 2019, 12(4): 820-825. (in Chinese) doi:  10.3788/co.20191204.0820
    [4] Mullo J L, Ramos-Grez J A, Barrionuevo G O. Effect of laser heat treatment on the mechanical performance and microstructural evolution of AISI 1045 Steel-2017-T4 aluminum alloy joints during rotary friction welding [J]. Journal of Materials Engineering and Performance, 2021, 30: 2617-2631. doi:  10.1007/s11665-021-05614-6
    [5] Dang Wenjia, Li Zhe, Li Yuting, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers [J]. Chinese Optics, 2020, 13(4): 677-694. (in Chinese)
    [6] Wang Jianjun, Liu Yu, Li min. et al. Ten-year review and prospect on mode instability research of fiber lasers [J]. High Power Laser and Particle Beams, 2020, 32(12): 121003. (in Chinese)
    [7] Ye Yun, Wang Xiaolin, Shi Chen, et al. Research progress in high power ytterbium doped fiber laser oscillator [J]. Laser & Optoelectronics Progress, 2018, 55(12): 120006. (in Chinese)
    [8] Deng Zhonghua, Liu Qibin, Xu Peng, et al. Corrosion resistance and mechanism of metallic surface processed by square-spot laser shock peening [J]. Journal of Materials Engineering, 2018, 46(8): 140-147. (in Chinese) doi:  10.11868/j.issn.1001-4381.2016.001063
    [9] Wang Huilin, Guo Yaxiong, Lan Hongwei, et al. Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding [J]. Surface Technology, 2019, 48(6): 130-137. (in Chinese)
    [10] Bai Yang, Lei Guangzhi, Chen Haowei, et al. Incoherent space beam combining of fiber-transmitted semiconductor lasers for oil well laser perforation [J]. IEEE Access, 2019, 7: 154457-154465. doi:  10.1109/ACCESS.2019.2919784
    [11] Zha Rongwei, Lei Guangzhi, Li Jianlin, et al. 19×1 space incoherent beam combining for 10 kW laser perforation in oil well [J]. Infrared and Laser Engineering, 2019, 48(10): 1005013. (in Chinese) doi:  10.3788/IRLA201948.1005013
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(372) PDF downloads(49) Cited by()

Related
Proportional views

High power laser incoherent spatial beam combining with rectangular spot

doi: 10.3788/IRLA20210268
  • 1. Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710127, China
  • 2. State Key Laboratory of Photon-Technology in Western China Energy, Xi’an 710127, China
  • 3. Space Optical Technology Research Department, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China
Fund Project:  Key Research and Development Project in Shaanxi Province, China (2020GY-118); Serving Local Special Project of Shaanxi Provincial Department of Education, China (19JC040)

Abstract: This work lays a foundation for promoting the application of incoherent spatial combining laser in laser surface heat treatment with high speed and flexible processing. 18 semiconductor laser beams at 972 nm output by the fiber were arranged in parallel according to the "matrix". By implementing beam collimation and incoherent spatial beam combination, a 10 kW combined laser beam with rectangular spot characteristics was obtained. The radius of the collimated laser beam, the distance between adjacent laser beams and the overlapping rate of the combined laser were theoretically analyzed, respectively. The structural model of the beam combiner was built using Code V software, and the spot energy distribution of the combined laser was simulated using TracePro software. Based on the above work, a 10 kW 18×1 incoherent spatial laser combiner of outputting a rectangular spot was developed. Within the combined length of 200 mm, the combined laser beam had a single rectangular spot shape. A beam combining power of 10.249 kW was achieved with a focal spot diameter of 31 mm×11 mm, a center wavelength of 972.34 nm and a linewidth of 2.27 nm.

    • 随着工业高功率激光器及其辅助设备的实用化,以高功率激光为热源的激光表面热处理逐渐成为金属材料表面强化技术研究的热点之一[1-4]。目前,激光表面热处理工艺主要采用3~6 kW级空间直接传输的矩形光斑近红外半导体激光器。以6 kW激光熔覆为例,正常熔覆效率仅为0.5 m2/h,已不能满足快速加工的需求。为提高加工速率,需要不断提高激光功率。但是,激光功率的提高会带来诸如激光器体积增大、热管理难度增大、光束质量变差等一系列问题[4]。此外,受到300~500 mm结构尺寸及采用空间传输方法的限制,空间传输的矩形光斑半导体激光器无法在狭小的零部件内部实施柔性激光热处理作业。

      虽然10 kW以上的高功率商业光纤激光器、光纤传输半导体激光器能够在一定程度上提升了激光表面热处理速率、解决柔性热处理问题,但是超高功率激光极易在单根光纤内部产生光学非线性效应、模式不稳定、热效应等危及光纤传输安全的问题[5-7]。光纤传输的激光光斑为圆形,在激光表面热处理过程中,圆形光斑搭接区域的激光功率密度不但高于非搭接区,而且分布不均匀。相比于圆形光斑,方形光斑能量均匀性更好,光斑搭接率易于控制和计算[8-9],这也是目前激光表面热处理工艺仍主要采用空间直接传输半导体激光器的主要原因。

      基于多根光纤传输的激光非相干合束是降低高功率激光在单根光纤中的传输风险、提高激光总输出功率、实现激光柔性传输的有效方法之一[10]。基于空间非相干激光合束,文中设计了一个18×1矩形光斑激光空间非相干合束器(简称“合束器”)。该型合束器由18套独立的准直单元和一套共用的合束单元构成。准直单元对每一束光纤输出、低功率的972 nm半导体激光束进行准直,合束单元对18束平行准直激光束实施空间非相干合束。通过模拟分析参与合束的准直激光束的半径、相邻光束间距与光斑搭接率之间的变化规律以及合束激光的横截面能量分布,优化设计了合束器的结构参数,实现了一定合束长度内具有单一矩形光斑形态、合束功率超过10 kW的高功率合束激光输出。该研究为快速、柔性激光表面热处理工艺的实际应用提供了借鉴意义。

    • 激光源采用18台光纤耦合输出、最大连续输出功率600 W左右的972 nm近红外半导体激光器。传输光纤的纤芯直径为440 μm、数值孔径NA为0.22。光纤输出端采用直径8 mm、带蓝宝石衬底的D80金属连接头连接,以确保其端面在大功率激光输出时的安全性。合束原理如图1(a)所示,18束光纤传输的激光束按照“矩阵方式”排列,每一束由光纤输出的发散激光束对应使用一个相同结构的准直单元,在进行空间合束之前实现准直和相互平行传输。完成准直的18束平行激光束通过共用的合束单元的合束叠加,获得具有单一光束形态且横截面为矩形的合束激光。

      Figure 1.  Schematic of laser incoherent space beam combining with a rectangular spot. (a) Changes in the space position of 18 laser beams; (b) Changes in the space position of two adjacent laser spots

      通过对远场光斑搭接率的计算,可完成参与合束的准直激光束发散角、相邻光束间距的合理设计。图1(b)展示了相邻两束准直激光束在合束单元第一个光学入射面上的光斑中心间距d和传输一定距离z后的光斑位置的变化关系。假设任意相邻的两束平行准直激光束在合束单元第一个光学入射面上的光束半径分别为r1r2r1=r2=r,则根据激光束传输几何关系,任意相邻两束激光束穿过该入射面并传输了一定距离z后的光束半径r1zr2z可由如下公式表示[10]

      式中:d为合束单元第一个光学入射面处任意两束平行准直光束的中心间距,即相邻两个准直单元光轴间距;θcdzmz分别为穿过该入射面并传输一定距离z后两束激光束的发散半角、光斑中心间距、光斑边缘临界交叉点在Y轴上的坐标。

      由公式(1)~(6)可推导出准直激光束在z位置时重合面积A、光斑搭接率η的计算公式[11]

      根据以上推导公式,准直激光束的发散半角、光斑半径及相邻光束间距对非相干空间合束效果产生直接影响。考虑到激光表面热处理产生的粉尘溅射对合束器安全性的影响,文中将合束单元的焦距F设定为500 mm。根据具体使用需求,将合束激光的焦斑尺寸设定为长30 mm (X轴)×宽10 mm (Y轴)。在传输距离z=F=500 mm处,设定单束激光光斑直径2r2z等于合束焦斑宽度。在傍轴近似下,准直激光束在合束单元第一个光学入射面处的半径r假设为0。根据公式(3)计算出θc=10.0 mrad。设定η>85%对应的传输距离差为合束长度Δz时,利用Matlab软件得到不同d值对应的光斑搭接率η与传输距离z之间的变化规律如图2(a)所示。若使Δz值尽量变长,则d值需要趋近于0。然而,D80光纤连接头的8 mm直径从结构上限制了d值不可能为0。故在确保D80光纤连接头按照矩形阵列分布并考虑合束器结构强度的基础上,d值设定为12 mm。

      Figure 2.  Variation between the beam propagation distance and the overlapping rate of the combined laser spot. (a) r=0, θc=10.0 mrad, different values of d; (b) θc=10.0 mrad, d=12 mm, different values of r; (c) r=3.5 mm, θc=14.8 mrad, d=12 mm

      根据光束衍射极限原理,准直激光束的r值实际不能为0。在F=500 mm、θc=10.0 mrad、d=12 mm的条件下,不同r值对应的光斑搭接率η与传输距离z之间的变化规律如图2(b)所示。r值越大,合束长度Δz越长。由于d值已被确定为12 mm,每套准直单元的光学透镜直径最大值ds将受到d值的限制,ds<12 mm。按照矩形阵列平行排列的18套准直单元由一块金属材料加工获得,同样基于合束器整体结构强度的考虑,ds值被设定为10 mm。文中将准直激光束的直径2rds值之间的比值设定为70%,以确保透镜通光面镀制的增透膜在高功率激光长期照射下保持稳定的高透射率,则r值设定为3.5 mm。

      根据准直激光束光斑半径r与其发散半角θc之间的变化关系[11]

      式中:f为准直单元焦距;D=440 μm为光纤直径;θ0=arcsin0.22为光纤端面处激光束发散半角。

      r=3.5 mm代入公式(9)和(10),可计算出f=14.9 mm,θc则被修正为14.8 mrad。光斑搭接率η与传输距离z之间的变化规律如图2(c)所示。在d=12 mm、r=3.5 mm、θc=14.8 mrad的修正参数下,合束长度Δz的理论值约为215 mm。

      将准直激光束的设定参数r=3.5 mm、f=14.9 mm、D=440 μm、θ0=arcsin0.22置入Code V光学设计软件,利用光线追迹法跟踪光学透镜表面发生折射的光线传播路径,模拟计算准直激光束的发散半角θc趋近于14.8 mrad的设定值,从而优化光学透镜的数量、通光面曲率半径、厚度及相邻透镜之间的间距。最终确定每套准直单元均由三个球面透镜(m1m2m3)构成,其结构模型及光学参数分别如图3(a)表1所示。光纤输出端面F、三个球面透镜m1m2m3彼此间距分别为5.4 mm、9.4 mm和4.0 mm。

      Figure 3.  Structural model of the beam combiner structure. (a) Collimation unit-XZ plane; (b) Combining unit-XZ plane; (c) Combining unit-YZ plane

      NameSurface typeRadiusThicknessDiameter
      XY
      m1In: Sphere−72.1−72.12.07.0
      Out: Sphere+5.3+5.3
      m2In: Sphere+20.0+20.01.512.0
      Out: Sphere−11.8−11.8
      m3In: Sphere+30.0+30.03.612.0
      Out: Sphere+15.4+15.4
      M1In: Sphere+115.35+115.3526.0130.0
      Out: Sphere
      M2In: Sphere+114.02+114.0215.0110.0
      Out: Sphere+153.11+153.11
      M3In: Sphere−138.23−138.2310.0100.0
      Out: Sphere+78.40+78.40
      M4In: Cylinder+119.4810.090.0
      Out: Sphere
      M5In: Sphere3.090.0
      Out: Sphere

      Table 1.  Parameters of the lenses (Unit: mm)

      在设计合束单元时,将准直激光束的设定参数r=3.5 mm、θc=14.8 mrad、d=12 mm置入Code V光学设计软件,通过光线追迹获得18束准直平行光在合束单元第一个光学入射面上的整体照射区域尺寸为87.5 mm (X轴)×宽31.0 mm (Y轴)。通过调整合束单元的光学透镜数量、通光面曲率半径、厚度及相邻透镜之间的间距,确保在z=F=500 mm位置处由光线追迹获得的合束焦斑尺寸趋近于30 mm (X轴)×宽10 mm (Y轴),即在合束单元第一个光学入射面与合束焦斑之间,18束平行准直激光束将在X轴方向、Y轴方向分别被实施8.75∶3(X轴)和3.1∶1(Y轴)的不等比例压缩成像。

      将Code V软件建立的合束单元结构模型参数置入TracePro光学仿真软件,可仿真模拟合束激光横截面能量分布。在验证合束光斑形貌为矩形的基础上,通过优化设计合束单元结构模型,尽可能增加合束长度。优化设计后的合束单元结构模型如图3(b)3(c)所示,合束单元由三个球面透镜(M1M2M3)、一个柱面透镜M4和一个平面窗口镜M5组成,其中球面透镜组(M1M2M3)对18束准直激光束照射区域实施X轴和Y轴同比例压缩成像,M4柱面透镜对18束准直激光束照射区域仅实施Y轴压缩成像。合束单元的最终光学参数如表1所示。准直单元的球面透镜m3、合束单元的光学透镜(M1M2M3M4M5)的相邻间距分别为6.4 mm、60.5 mm、16.8 mm、15.0 mm和5.0 mm。

    • 基于准直单元和合束单元的最终结构参数,当18束972 nm激光参与合束、每束激光连续功率为600 W时,沿激光合束方向(Z轴)不同位置处合束激光光斑的能量分布TracePro仿真如图4所示,合束激光光斑尺寸如表2所示。沿Z轴方向,将合束焦斑位置作为0点,图4(e)显示出合束焦斑为单一的矩形光斑形貌,焦斑尺寸接近于30 mm×10 mm的理论设定值。当仿真点与焦斑间距Δl分别为−100 mm、−50 mm、0 mm、+50 mm和+100 mm时,图4(c)~图4(g)分别描述了离焦条件下,矩形合束激光的光斑能量均呈现出类似于单束高斯激光束的聚合分布状态。图4(a)4(b)4(h)4(l)所描述的矩形合束激光的光斑能量分布均出现分离散现象。图4(c)图4(g)之间的相对距离为200 mm,而图4(b)图4(c)之间、图4(g)图4(h)之间相对距离均只有5 mm,可认为合束长度Δz的模拟值为200 mm,即图4(c)图4(g)仿真点之间的距离。可以看出,合束光斑能量分布会在较短距离内发生剧烈变化,距离焦斑位置越远,合束激光的光斑能量分布越不均匀,合束质量越差。其主要原因在于18束激光束在合束单元的聚焦合束作用下完成了激光空间非相干合束,从合束焦斑的0 mm位置向±100 mm合束位置延伸中,相邻两束激光的光斑搭接率从99%降低至85%,彼此光斑中心间距逐渐增大导致85%的光斑搭接率成为定义合束长度和判断合束光斑能量分布产生聚合的临界值。

      Figure 4.  Spot energy simulation distribution of combined laser beam. (a) Δl=−150 mm; (b) Δl=−105 mm; (c) Δl=−100 mm; (d) Δl=−50 mm; (e) Δl=0 mm; (f) Δl=+50 mm; (g) Δl=+100 mm; (h) Δl=+105 mm; (i) Δl=+150 mm

      ΔlSimulation valueMeasured valueEnergy distribution
      −15057.9×28.556.8×27.7Splitting
      −10550.1×22.649.0×21.4Splitting
      −10046.5×19.647.1×19.2Aggregation
      −5040.2×16.738.4×15.0Aggregation
      030.9×11.031.4×11.4Aggregation
      +5040.4×16.939.2×16.3Aggregation
      +10047.1×21.746.2×21.3Aggregation
      +10551.8×23.951.1×23.1Splitting
      +15058.5×29.158.1×28.5Splitting

      Table 2.  Spot size of the combined beam laser (Unit: mm)

    • 合束器由热传导率高、力学性能好的H85黄铜加工制造,其外径、长度分别为150 mm和160 mm。合束器的工程图及实物照片如图5所示。合束器和18台半导体激光器均由20 ℃去离子水冷却。每台半导体激光器由一台直流电源驱动,18台直流电源由同步信号控制器控制,实现1~18台直流电源的同步启停或驱动电流的同步增减。当单台直流电源最大泵浦电流38 A时,每台半导体激光器的最大光纤输出功率约为600 W。

      Figure 5.  Photos of 18×1 laser incoherent space beam combiner. (a) Engineering three-dimensional design drawing; (b) Engineering design drawing Y-Z axis section; (c) Photo of the fiber connection end face of the combiner; (d) Overall photo of the combiner

      18台半导体激光器同步工作、泵浦电流均为38 A时,如图6所示,沿Z轴方向在与上述仿真点的对应位置处实施了针对厚度为2 mm的Q235B低碳钢板激光射孔,可通过孔洞形貌来标定合束激光的光斑形貌,孔洞尺寸如表2所示。射孔孔洞的尺寸与合束光斑的仿真尺寸相似度较好,说明合束激光的实验标定尺寸与模拟尺寸具有较高的一致性。图6(c)~6(g)对应的5个测试点处射孔孔洞的形貌均为对称性较好的矩形,说明图6(c)图6(g)的测试点之间200 mm的间距即为合束距离Δz的实验值,与仿真结果一致。而图6(a)6(b)6(h)6(l)中射孔形貌的不对称性则进一步验证了合束激光在光斑搭接率小于85%时在对应位置处光斑能量分布出现分离,且光斑搭接率越小,合束光斑的能量分裂越剧烈。

      Figure 6.  Hole morphology of the combined laser perforated steel plate sample along the combined beam direction. (a) Δl=−150 mm; (b) Δl=−105 mm; (c) Δl=−100 mm; (d) Δl=−50 mm; (e) Δl=0 mm; (f) Δl=+50 mm; (g) Δl=+100 mm; (h) Δl=+105 mm; (i) Δl=+150 mm

      在经过透射率为53.4%、反射率为46.6%的972 nm 45°分光平面透镜后,合束激光被分为两束,如图7所示,当每台半导体激光器的最大泵浦电流为38 A时,同时利用两台量程为6 kW的激光功率计测量出透射光束与反射光束的功率分别为5.464 kW和4.785 kW,合束激光的总功率达到10.249 kW,合束效率达到98.5%。连续运转10 min,功率不稳定性小于±1.2%。

      Figure 7.  Variation between the beam combining power and the pump current

      18台半导体激光器分别独立运转时,如图8(a)所示,光谱仪测得的972 nm激光中心波长λc分布在971.43~973.61 nm范围内,对应谱线宽度Δλ在1.45~1.87 nm范围内变化。当18台半导体激光器同步运转时,在合束距离200 mm内,即距离合束焦斑的距离Δl分别为−100 mm,−50 mm, 0 mm, +50 mm和+100 mm处的合束激光光谱分别如图8(b)~图8(f)所示。可以看出,在合束焦斑位置处合束激光的中心波长λc测量值为972.34 nm,对应2.27 nm的谱线宽度。距离合束焦斑位置越近,合束激光的中心波长向972.34 nm移动,谱线宽度也更接近于2.27 nm,光谱曲线的均匀性得到明显提升。其原因在于从合束长度边缘向合束长度中心位置即合束焦斑位置移动时,参与合束的18束半导体激光束的空间重叠性不断增加促使合束激光光谱的均匀性得到进一步提升。

      Figure 8.  Laser spectrum before and after beam combination. (a) 18 laser beam independent spectrum superposition; Combined beam laser spectroscopy with (b) Δl=−100 mm; (c) Δl=−50 mm; (d) Δl=0 mm; (e) Δl=+50 mm; (f) Δl=+100 mm

    • 基于激光非相干空间合束原理并结合光学设计及仿真,研制出一款连接18台972 nm光纤输出半导体激光器的18×1矩形光斑激光非相干空间合束器,实验获得了在200 mm合束长度内具有单一矩形光斑特征、10.249 kW最大合束功率、98.5%合束效率的空间非相干合束激光。合束激光的中心波长为972.34 nm、谱线宽度为2.27 nm、焦斑尺寸为31 mm×11 mm、功率不稳定性小于±1.2%。参与合束的18束传输光纤不但能够有效降低高功率激光在单根光纤中的传输风险,有利于将高功率激光柔性传输至金属零部件的内部狭小空间,而且矩形合束光斑易于控制和计算光斑搭接率,有效地减小激光光斑搭接区域内激光功率密度分布的不均匀性。该型合束器为高速、柔性激光表面热处理的工程化实际应用提供了一种有价值的选择。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return