Volume 51 Issue 6
Jul.  2022
Turn off MathJax
Article Contents

Yang Yi, Liu Yan, Wang Yilong, Zhang Jianlei, Yang Fangming. Influence of underwater composite channel on performance of GMSK wireless optical communication system[J]. Infrared and Laser Engineering, 2022, 51(6): 20210622. doi: 10.3788/IRLA20210622
Citation: Yang Yi, Liu Yan, Wang Yilong, Zhang Jianlei, Yang Fangming. Influence of underwater composite channel on performance of GMSK wireless optical communication system[J]. Infrared and Laser Engineering, 2022, 51(6): 20210622. doi: 10.3788/IRLA20210622

Influence of underwater composite channel on performance of GMSK wireless optical communication system

doi: 10.3788/IRLA20210622
Funds:  National Natural Science Foundation of China (61805199);Technology Innovation Guidance Special Fundation of Shaanxi Province(2020 TG-001);State Key Laboratory of Underwater Information and Control Foundation(JCKY2020207 CD02);Microwave Photonics and Optical Communication Innovation Team of Shaanxi Province(2021TD-09);2020 Graduate Innovation Fundation of Xi ’an University of Posts and Telecommunications(CXJJLY202053)
  • Received Date: 2021-08-30
  • Rev Recd Date: 2022-01-13
  • Publish Date: 2022-07-05
  • The absorption and scattering of light in seawater channel cause signal attenuation, and the turbulence of seawater causes signal amplitude fluctuation, both of which will reduce the bit error rate (BER) performance of underwater wireless optical communication (UWOC) system. The effects of the two channel characteristics on the signal performance were considered comprehensively, and a method was proposed to equate the transmission distance and turbulence probability density function to the system signal-to-noise ratio (SNR) and turbulence noise, and then the signal attenuation and turbulence noise were combined into the signal waveform to establish the underwater composite channel signal transmission model. According to the experimental system parameters, the signal transmission waveforms of Gaussian minimum frequency shift keying (GMSK) modulation under composite channel were simulated, and the one-bit difference demodulation algorithm was used to compare the demodulated waveforms with the original waveform, and the influence relationships of composite channel on the system BER performance was analyzed. The simulation experiment results show that, compared with on-off keying modulation (OOK), pulse position modulation (PPM), GMSK system can obtain the SNR gain of 3.3 dB, 4.8 dB respectively only in the attenuation channel with seawater attenuation coefficient of 0.151 m−1. Under the composite channel, GMSK modulation performance is superior to OOK modulation and PPM modulation. When the water attenuation coefficient is 0.151 m−1, and turbulence intensity variance is smaller than 0.16, GMSK modulation system has no error rate limit, the system BER is decided by signal attenuation and turbulence noise and Gaussian noise together, GMSK modulation achieves SNR gain of 4.35 dB compared with PPM modulation. Furthermore, turbulence intensity variance is greater than 0.16, system BER arrives limit, which value is determined by the turbulence intensity, and the limit value of BER increases nonlinearly with the increase of turbulence intensity.
  • [1] Xu J. Underwater wireless optical communication: Why, what, and how? (Invited) [J]. Chinese Optics Letters, 2019, 17(10): 100007.
    [2] Zhu S J, Chen X W, Liu X Y, et al. Recent progress in and perspectives of underwater wireless optical communication [J]. Progress in Quantum Electronics, 2020, 73: 100274.
    [3] Jiang Hongyan, Qiu Hongbing, He Ning, et al. Optical OFDM spatial diversity system in lognormal fading UVLC channels [J]. Infrared and Laser Engineering, 2020, 49(2): 0203008. (in Chinese) doi:  10.3788/IRLA202049.0203008
    [4] 李军, 元秀华, 王铭淏. 空潜自由空间光通信的链路性能评估[J]. 中国光学, 2019, 12(2): 405-412. doi:  10.3788/co.20191202.0405

    Li Jun, Yuan Xiuhua, Wang Minghao. Link performance evaluation for air-sea free-space optical communications [J]. Chinese Optics, 2019, 12(2): 405-412. (in Chinese) doi:  10.3788/co.20191202.0405
    [5] 管海军, 刘云清, 张凤晶. 基于数字相位恢复算法的正交相移键控自由空间相干光通信系统[J]. 中国光学, 2019, 12(5): 1131-1138. doi:  10.3788/co.20191205.1131

    Guan Haijun, Liu Yunqing, Zhang Fengjing. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm [J]. Chinese Optics, 2019, 12(5): 1131-1138. (in Chinese) doi:  10.3788/co.20191205.1131
    [6] Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation [J]. Optics Express, 2017, 25(22): 27937-27947. doi:  10.1364/OE.25.027937
    [7] Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode [J]. Optics Express, 2019, 27(9): 12171-12181. doi:  10.1364/OE.27.012171
    [8] Chen H L, Chen X W, Lu J, et al. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode [J]. IEEE Photonics Journal, 2020, 12(3): 7902510.
    [9] Peppas K P, Boucouvalas A C, Ghassemloy Z. Performance of underwater optical wireless communication with multi-pulse pulse-position modulation receivers and spatial diversity [J]. IET Optoelectronics, 2017, 11(5): 180-185. doi:  10.1049/iet-opt.2016.0130
    [10] Fu Y Q, Du Y Z. Performance of heterodyne differential phase-shift-keying underwater wireless optical communication systems in gamma-gamma-distributed turbulence [J]. Applied Optics, 2018, 57(9): 2057-2063. doi:  10.1364/AO.57.002057
    [11] Zedini E, Oubei H M, Kammoun A, et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems [J]. IEEE Transactions on Communications, 2019, 67(4): 2893-2907. doi:  10.1109/TCOMM.2019.2891542
    [12] 傅玉青, 段琦, 周林. Gamma Gamma强海洋湍流和瞄准误差下水下无线光通信系统的性能研究[J]. 红外与激光工程, 2020, 49(02): 0203013-0203013. doi:  10.3788/IRLA202049.0203013

    Fu Yuqing, Duan Qi, Zhou Lin. Performance of underwater wireless optical communication system in Gamma Gamma strong oceanic turbulence with pointing error [J]. Infrared and Laser Engineering, 2020, 49(2): 0203013. (in Chinese) doi:  10.3788/IRLA202049.0203013
    [13] 曹明华, 武鑫, 杨顺信, 贾科军. Log-normal湍流信道中超奈奎斯特传输系统的误码性能[J]. 光学精密工程, 2020, 28(02): 465-473.

    Cao Minghua, Wu Xin, Yang Shunxin, Jia Kejun. BER performance of Faster-than-Nyquist communications under Log-normal turbulence channel [J]. Optics and Precision Engineering, 2020, 28(2): 465-473. (in Chinese)
    [14] Bai J R, Cao C F, Yang Y, et al. Peak-to-average power ratio reduction for DCO-OFDM underwater optical wireless communication system based on an interleaving technique [J]. Optical Engineering, 2018, 57(8): 086110.
    [15] 陈牧, 柯熙政. 大气湍流对激光通信系统性能的影响研究[J]. 红外与激光工程, 2016, 45(08): 115-121. doi:  10.3788/IRLA201645.0822009

    Chen Mu, Ke Xizheng. Effect of atmospheric turbulence on the performance of laser communication system [J]. Infrared and Laser Engineering, 2016, 45(8): 0822009. (in Chinese) doi:  10.3788/IRLA201645.0822009
    [16] 张悦, 王惠琴, 张莉萍, 等. Gamma-Gamma湍流信道下广义空时脉冲位置调制[J]. 光学精密工程, 2020, 28(11): 2437-2445. doi:  10.37188/OPE.20202811.2437

    Zhang Yue, Wang Huiqin, Zhang Liping, et al. Generalized space-time pulse position modulation over Gamma-Gamma turbulence channel [J]. Optics and Precision Engineering, 2020, 28(11): 2437-2445. (in Chinese) doi:  10.37188/OPE.20202811.2437
    [17] 陆璐. 海洋湍流对激光束传输的影响[D]. 中国科学技术大学, 2016.

    Lu Lu. Influence of oceanic turbulence on propagation of laser beams[D]. Hefei: University of Science and Technology of China, 2016. (in Chinese)
    [18] Robert C P, Casella G. Monte Carlo Statistical Methods[M]. New York: Springer, 1999.
    [19] Wang Y, Wang Y P. Research on the system performance of Gaussian minimum-shift keying with M-distribution in satellite-to-ground laser communication [J]. Optics Communications, 2020, 459: 124994. doi:  10.1016/j.optcom.2019.124994
    [20] Yang Y, Fan L R, He F T, et al. Long-distance underwater optical wireless communication with PPLN wavelength conversion [C]//24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics. International Society for Optics and Photonics, 2020, 11717: 117172J.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(2)

Article Metrics

Article views(127) PDF downloads(42) Cited by()

Related
Proportional views

Influence of underwater composite channel on performance of GMSK wireless optical communication system

doi: 10.3788/IRLA20210622
  • School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
Fund Project:  National Natural Science Foundation of China (61805199);Technology Innovation Guidance Special Fundation of Shaanxi Province(2020 TG-001);State Key Laboratory of Underwater Information and Control Foundation(JCKY2020207 CD02);Microwave Photonics and Optical Communication Innovation Team of Shaanxi Province(2021TD-09);2020 Graduate Innovation Fundation of Xi ’an University of Posts and Telecommunications(CXJJLY202053)

Abstract: The absorption and scattering of light in seawater channel cause signal attenuation, and the turbulence of seawater causes signal amplitude fluctuation, both of which will reduce the bit error rate (BER) performance of underwater wireless optical communication (UWOC) system. The effects of the two channel characteristics on the signal performance were considered comprehensively, and a method was proposed to equate the transmission distance and turbulence probability density function to the system signal-to-noise ratio (SNR) and turbulence noise, and then the signal attenuation and turbulence noise were combined into the signal waveform to establish the underwater composite channel signal transmission model. According to the experimental system parameters, the signal transmission waveforms of Gaussian minimum frequency shift keying (GMSK) modulation under composite channel were simulated, and the one-bit difference demodulation algorithm was used to compare the demodulated waveforms with the original waveform, and the influence relationships of composite channel on the system BER performance was analyzed. The simulation experiment results show that, compared with on-off keying modulation (OOK), pulse position modulation (PPM), GMSK system can obtain the SNR gain of 3.3 dB, 4.8 dB respectively only in the attenuation channel with seawater attenuation coefficient of 0.151 m−1. Under the composite channel, GMSK modulation performance is superior to OOK modulation and PPM modulation. When the water attenuation coefficient is 0.151 m−1, and turbulence intensity variance is smaller than 0.16, GMSK modulation system has no error rate limit, the system BER is decided by signal attenuation and turbulence noise and Gaussian noise together, GMSK modulation achieves SNR gain of 4.35 dB compared with PPM modulation. Furthermore, turbulence intensity variance is greater than 0.16, system BER arrives limit, which value is determined by the turbulence intensity, and the limit value of BER increases nonlinearly with the increase of turbulence intensity.

    • 水下无线光通信(underwater wireless optical communication,UWOC)具有频带宽、传输距离远、通信速率高、体积小、功耗低和便于集成等优点[1-2]。由于光脉冲受海水介质吸收、散射和湍流的影响[3-4],产生光信号功率衰减、光强闪烁[5]等现象,致使激光信号质量劣化,限制了无线光信号在海水中的传输距离。

      针对海水中无线光吸收和散射特性导致的信号衰减和性能劣化,研究人员已经做了大量研究。2017年,Liu X Y [6]等人实验了一种基于520 nm绿色激光二极管(laser diode,LD)的低功耗UWOC系统,采用非归零开关键控调制方式,实现了数据速率为2.70 Gbps 的34.5 m的通信,误码率低于前向纠错2.5 ×10−3。2019年,Wang J M [7]等人采用520 nm绿色LD和功率高效的非归零开关键控调制,通过100 m自来水通道成功实现了500 Mbps的数据速率,实测系统误码率值为 2.5 × 10−3。2020年,Chen H L[8]等人搭建了基于单光子雪崩二极管接收机的UOWC系统,利用中性密度滤光片衰减450 nm蓝色LD的光输出功率,OOK调制在500 bps和2 Mbps的数据速率下,UOWC系统的最大距离分别为144 m和117 m,对应误码率分别为1.89×10−3和 5.31×10−4

      针对水下湍流对无线激光通信性能的影响,在过去几年中,研究人员提出了几种有效的技术来减轻UWOC系统性能恶化。2017年,Peppas K P [9]等人采用空间分集和多脉冲位置调制技术,利用对数正态湍流模型建模,推导出了平均误码概率的解析表达式,仿真分析了可实现的数据速率和水质类型对系统性能的影响。2018年,Fu Y Q [10]等人推导了差分相移键控在UWOC系统中的平均误码率和中断概率的解析表达式,仿真分析了在强海洋湍流双伽玛(Gamma-Gamma)分布信道下不同的海洋湍流参数的误码率性能。2019年,Zedini E [11]等人使用混合指数广义伽马湍流模型的UWOC 链路,推导出了淡水和咸水在不同湍流条件下的中断概率、不同调制方案的平均误码率的封闭表达式。2020年,FU Y Q [12]等人采用外差式差分相移键控调制的UWOC系统经过Gamma-Gamma强海洋湍流信道传输,推导了UWOC系统的平均BER解析表达式,并通过数值模拟方法研究了不同的瞄准误差、接收孔径和海洋湍流参数对平均BER的影响。

      从已报道的误码率分析来看,海水衰减信道对UWOC系统性能影响的分析方法主要为实验系统测试;湍流信道对UWOC系统性能影响的研究主要是通过数值分析、解析表达式分析误码率性能。文中采用GMSK调制方式,生成调制信号波形,采用双伽玛湍流信道概率密度函数产生随机噪声,仿真实际实验系统参数,将衰减信道和湍流信道对系统性能的影响作用在传输信号的波形上,然后进行解调处理,通过对比解调波形与原始波形计算误码率特性,分析复合信道对系统性能的影响。

    • 光信号在海水信道传输时,海水对光的吸收和散射会造成信号幅度衰减;海水湍流会引起信号幅度起伏变化,可将信号近似为进行了一个低频调制,因此为乘性干扰;系统高斯噪声为加性干扰。综合考虑这些干扰因素,光信号通过水下复合信道后接收到的信号表示为[13]

      式中:${{{S}}_{gmsk}}$为发射端调制后的GMSK信号;${h_s}$为衰减信道函数;${h_t}$为湍流信道函数,其概率密度函数服从Gamma-Gamma分布;加性噪声$n$满足均值为0、方差为1的高斯分布随机过程。

    • 光信号在水下传播受到水体中颗粒的吸收和散射,从而引起能量衰减。吸收和散射系数取决于水的类型,不同水质的衰减系数不同,如纯水,远洋、近海和港口。如表1 所示,分别给出了这四种海水类型对光的吸收、散射系数和总的衰减系数[2]

      Water typesAbsorption coefficient/m−1Scattering coefficient/m−1Attenuation coefficient/m−1
      Pure sea water0.0410.0030.044
      Clear ocean water0.1140.0370.151
      Coastal ocean water0.1790.2190.398
      Turbid harbor water0.3661.8242.190

      Table 1.  Absorption, scattering and attenuation coefficients of different water qualities

      水下无线光通信系统的性能不仅与衰减信道的传输介质有关,还与光源发散角引起的光束扩展有关。尽管在接收端采用光学接收天线对光束进行聚焦,但由于光束存在一定的发散角,随着接收距离的增加,接收机无法把全部光束聚焦到探测器,引起能量损失。光在海水信道传输时引起的光束扩展如图1所示。

      Figure 1.  Beam spread diagram

      其中,$ \theta $为光源的发散角,$ {a_t} $为光学发射天线的半径,$ {a_r} $为光学接收天线的半径,$ d $为光束在海水中的通信距离。光束扩展后的光束半径$ r $与传播距离$ d $的关系为:$r = d \tan \theta + {a_t}$,根据比尔朗伯定律,接收信号功率[14]可表示为:

      式中:$ {P_t} $为光发射功率;$ {P_r} $为光接收功率;$ c $为海水总的衰减系数。

      因此,衰减信道函数$ {h_s} $的表达式可表示为:

    • Andrews 等人针对海水湍流特性介绍了修正的 Rytov 理论,并提出了 Gamma-Gamma 概率密度函数作为湍流的数学模型,能够描述从弱到强不同强度的湍流状态。该模型基于双重随机闪烁理论,并假定小尺度的辐照度波动受传播波的大尺度辐照度波动的调制,两者均由独立的Gamma分布控制,如公式(4)、(5)所示[15]

      接收端光信号$I$可表示为两个独立的服从 Gamma 分布的随机变量的乘积,即$ I = {I_x} \cdot I{}_y $,典型的光强概率密度函数用Gamma-Gamma 分布表示为[16]

      式中:$\alpha $$\beta $分别为散射过程中大区域和小区域漩涡的有效数量;${K_{{{{n}}}}}( \cdot )$为第二类n阶修正的贝塞尔函数;$\varGamma ( \cdot )$表示Gamma函数。强度概率密度函数中的$\alpha $$\beta $与湍流强弱有关,公式如下:

      式中:$ \sigma _l^2 $为对数强度方差,通过$ \sigma _l^2 $将湍流分为弱湍流、中度湍流以及强湍流。在不同的湍流区域下$\alpha $$\; \beta $的值如图2所示。在弱的湍流区域,对数强度方差小于1,$\alpha $$\; \beta $的值远大于1;当对数强度方差增加到1以上,逐渐到饱和聚焦区域,$\alpha $$\; \beta $的值减少[17]。选用从弱到强的湍流进行仿真实验分析,对数强度方差$ \sigma _l^2 $的范围为0.15~2,湍流起伏相干时间为$ \tau $s,相干长度为$\;\rho $m。

      Figure 2.  Values of α and β in different turbulent regions

      海水湍流导致信号闪烁,其作为系统的乘性噪声为随机过程。该随机过程使用接受拒绝采样算法[18],生成湍流随机噪声。针对不同的对数强度方差 $ \sigma _l^2 $ 获得$\alpha $$\; \beta $值,并产生一个覆盖Gamma-Gamma分布概率密度函数$ f\left( I \right) $的高斯分布随机函数$ q\left( I \right) $;然后引入常数$ k $,使得对所有的$ I $满足$ kq\left( I \right) \geqslant f\left( I \right) $;在每次采样中,首先从$ q\left( I \right) $采样一个数值$ {I_0} $,然后在区间$ \left[ {0,kq\left( {{I_0}} \right)} \right] $进行均匀采样,得到$ {u_0} $。如果$ {u_0} \leqslant f\left( {{I_0}} \right) $,则保留该采样值$ {I_0} $,否则舍弃该采样值;最后得到的数据就是对该分布的一个近似采样,其符合湍流模型分布的随机噪声,即生成${h_t}$函数的离散噪声数据。

      图3(a)为由接受拒绝采样算法产生的对数强度方差$ \sigma _l^2 $为0.5的高斯分布函数和Gamma-Gamma概率密度函数,图3(b)为接受拒绝采样算法产生的不同对数强度方差的Gamma-Gamma分布随机噪声直方图。

      Figure 3.  (a) $ \sigma _l^2 $=0.5 Gamma-Gamma probability density function and Gaussian distribution function; (b) Gamma-Gamma random noise distribution of different logarithmic intensity variances

    • GMSK是一种连续相位的二进制最小频移键控调制方式[19],调制指数为0.5,MSK是一种特殊的相位不连续调制,GMSK是在MSK的基础上得到的,有较好的频谱特性和误码性能。

      GMSK信号调制框图如图4所示。利用正交调制法,首先对输入信息序列进行双极性变化,差分编码,串并转化分为I路和Q路,并相互交错一个码元宽度${T_{{b}}}$,然后对两路信号分别进行重采样,采样倍数N与码元速率$ {P_s} $和采样速率$ {F_s} $有关,即$N = {F_{{s}}}/{P_{{s}}}$,把重采样得到的序列通过高斯滤波器,最后用加权函数$\cos (\pi t/2{T_{{b}}})$$\sin (\pi t/2{T_{{b}}})$分别对两路数据进行加权,用加权后的数据分别对正交载波$ \cos {\omega _c}t $$ \sin {\omega _c}t $进行调制,将两路输出信号进行叠加得到调制后的GMSK信号。

      Figure 4.  Block diagram of GMSK signal modulation

      GMSK调制的关键是设计高斯低通滤波器,其传输函数为:

      式中:$\alpha $为滚降系数,与高斯滤波器3 dB带宽${B_{{b}}}$的关系可以表示为:

      高斯滤波器的冲击响应函数为:

      单个矩形脉冲通过高斯滤波器的响应表达式为:

      式中:$b(t)$为矩形脉冲序列。其中:

      在LD无线光通信中,兼顾误码率和频谱的密度,设置$B{T_{{b}}}$值为0.5。设$\varphi = {{\pi t} \mathord{\left/ {\vphantom {{\pi t} {2{T_{{b}}}}}} \right. } {2{T_{{b}}}}}$,经过GMSK调制,得到GMSK调制信号的表达式为:

    • GMSK信号的解调器可以采用和MSK一样的相干解调方式,但需要提取相干载波,这在水下电磁屏蔽环境中是比较困难的,相对于相干解调,非相干解调技术的成本更低,更易于实现,应用也更加广泛,所以系统采用一比特延迟差分检测的非相干解调方式,其原理框图如图5所示。

      Figure 5.  Block diagram of GMSK demodulation

      接收的中频模拟信号通过正交下变频处理将信号的中心频率搬到零频,然后通过低通滤波器分别得到同相分量和正交分量。经过一比特差分进行解调,抽样判决得到二进制基带信号。

      输入信号经过水下光信道后被接收端接收到的接收信号为:

      式中:$R(t)$为时变包络;${w_c}$为载波频率;$\varphi (t)$表示时变相位;$ n(t) $为噪声。

      经过混频得到 I、Q两路信号:

      然后通过低通滤波器得到信号:

      经过低通滤波器后进行一比特差分解调,即将${y_I}(t)$${y_Q}(t)$与延时信号${y_I}(t - {T_{{b}}})$${y_Q}(t - {T_{{b}}})$交叉相乘、相减得到,其表达式为:

      式中:$ \Delta \phi ({T_b}){\text{ = }}\phi (t) - \phi (t - {T_b}) $

      由上述分析可知,$R(t)$$R(t - {T_b})$为时变慢包络,所以$Y(t)$的符号由$ \Delta \phi ({T_b}) $决定。令1 bit差分解调的判决门限为0,当$\sin [\Delta \phi ({T_b})]$大于 0 时,即$\Delta \phi ({T_b}) \gt 0$,这时$Y(t) \gt 0$,判决为1;反之当$\sin [\Delta \phi ({T_b})]$小于0时,即$\Delta \phi ({T_b}) \lt 0$,这时$Y(t) \lt 0$,判决为0。通过这种相位变化的判决方法可完全恢复出原始数据。

    • 文中所用水下无线光通信系统结构如图6所示,发射机包括GMSK调制模块、LD光源驱动、光放大模块、倍频模块、光学发射天线。输出光信号经过水下信道到达接收机,通过光学天线进行接收,接收机使用THORLAB光电探测器APD430A2将接收到的光信号进行光电转换,然后再对GMSK信号解调得到原始信号。

      Figure 6.  Underwater wireless optical communication system

      该实验系统参数[20]表2所示。

      ParameterValue
      Launch aperture radius/mm 40
      Receiving aperture radius/mm 75
      Half angle of beam divergence/mrad 0.6
      Original sequence length 106
      Transmit power/W 1
      Water quality attenuation coefficient/m−1 0.151
      LD Wavelength/nm 532
      Detector conversion gain of APD430A2/V·W−1 105

      Table 2.  System parameters

    • 根据以上系统参数建立GMSK调制解调系统模型,发送端采用${B_{{b}}}{T_{{b}}}$为0.5的GMSK正交调制方式,接收端采用一比特差分解调,将其应用于UWOC系统,设置湍流相干时间$\tau $与码元宽度${T_b}$的比值为100∶1,采样速率为信号速率的30倍,载波频率为信号频率$1/{T_b}$的2倍,其余参数按表2设置。

      GMSK调制输出的光信号,经过海水水质衰减系数为$0.151\;{{\text{m}}^{-1}}$的纯衰减信道传输150 m,经过衰减信道和对数强度方差$ \sigma _l^2 = 0.15 $的湍流信道后的部分波形如图7(a)所示。图7(b)为信噪比为$10\;{\text{dB}}$时的解调前后信号的部分波形。图7(b)的第一幅波形为解调前信号的部分波形,第二幅波形对应为第一幅波形经过解调后的信号波形。

      Figure 7.  (a) Waveform of GMSK modulated optical signal through channel; (b) Comparison of signal waveform before and after SNR=10 dB demodulation

      图7(a)中可以看出,GMSK调制信号先经过衰减信道,其幅度会减小,波形未发生变化;经过衰减后的信号再经过湍流信道,此时信号波形会产生失真,其幅度发生非线性变化,产生了信号包络随时间变化特性,变化快慢与信号码元宽度${T_b}$和湍流相干时间$\tau $有关。从图7(b)中可以看出,受复合信道干扰的信号通过解调后可恢复为标准二进制信号。

      由于接收系统噪声为高斯白噪声,根据传输模型公式(1),其中的高斯噪声$n$在仿真中根据信噪比$SN{R_0}$设置,$SN{R_0}$表示为公式(23),其中信号功率$S$为发射光功率为1 W、传输无衰减时的归一化电信号功率,仿真时噪声功率$N$$SN{R_0}$改变。当信号经过海水信道之后,信号功率发生衰减,接收端信噪比$SNR$随之改变,根据实际接收到的信号修正的信噪比$SNR$如下:

      式中:$ {P_t} $为光发射功率;$ {P_r} $为光接收功率。令修正后的海水信道传输衰减值为$D$,其表达式为:

      因此,$ SNR = SN{R_0} + D $

      仅考虑衰减信道,信道无湍流作用,且海水水质衰减系数为${\text{0}}{\text{.151}}\;{{\text{m}}^{ - 1}}$,传输距离为150 m时,OOK调制、PPM调制和GMSK调制的误码率随信噪比的变化如图8(a)所示。可以看出,当系统误码率为10−3时,GMSK的信噪比为$ {\text{8 dB}} $,相比于OOK调制、PPM调制分别获得${\text{4}}{\text{.8 }}$$ {\text{3}}{\text{.3 dB}} $增益。

      Figure 8.  (a) Comparison of BER performance of OOK modulation, PPM modulation and GMSK modulation in attenuation channels; (b) Comparison of BER performance of OOK modulation, PPM modulation and GMSK modulation in composite channels

      在复合信道作用下,海水水质衰减系数为${\text{0}}{\text{.151}}\;{{\text{m}}^{ - 1}}$,湍流对数强度方差$ \sigma _l^2 = 0.15 $,传输距离为150 m时,OOK调制、PPM调制和GMSK调制的误码率随信噪比的变化如图8(b)所示。可以看出,在有湍流的复合信道的长距离通信中,OOK调制下的系统误码率存在极限值,为${\text{3}} \times {\text{1}}{{\text{0}}^{-2}}$,其误码率大于${\text{1}}{{\text{0}}^{-3}}$,很难满足系统的正常工作要求;当系统误码率为${\text{1}}{{\text{0}}^{-3}}$时,GMSK的信噪比为$ {\text{12}}{\text{.85 dB}} $,相比于PPM调制可获得$ {\text{4}}{\text{.35 dB}} $增益。

      给定$\sigma _l^2$分别为0.15、0.16、0.5、1、1.5、2,水质衰减系数为${\text{0}}{\text{.151}}\;{{\text{m}}^{-1}}$的复合信道下,信噪比随高斯噪声和传输距离变化,分析GMSK调制系统的误码率性能如图9(a)~(f)所示。

      Figure 9.  Comparison of system BER performance of GMSK modulation in composite channels with different turbulence logarithmic intensities variance

      图9(a)中可以看出,在湍流对数强度方差$\sigma _l^2 = 0.15$的复合信道下,GMSK调制系统已不存在误码率极限。但相比图8(a)可知,达到相同误码率、传输相同距离时,有湍流的信道需要更高的信噪比,即更低的高斯噪声。

      图9(f)中可以看出,在湍流对数强度方差$\sigma _l^2 = 2$的复合信道下, GMSK调制的传输距离为130、140、150 m时,当信噪比分别小于${\text{36}}{\text{.81}}$${\text{43}}{\text{.82}}$$ {\text{49}}{\text{.85 dB}} $时,高斯噪声、信道衰减和湍流共同决定UWOC系统的性能。当信噪比分别大于这些值时,即信道衰减和高斯噪声引起的信号失真较小,系统误码率由湍流对数强度方差决定,且误码率趋于一个极限值,为$8.9 \times {10^{-4}}$

      同样,从图9(b)~(f)中可以看出,在相同湍流对数强度方差下,无论传输距离远近,最终GMSK调制系统的误码率都会趋于一个极限,这个极限值与湍流对数强度方差有关。

      对比图9(a)~(f),复合信道下,在湍流对数强度方差分别为0.15、0.16、0.5、1、1.5、2时,其传输距离与信噪比的关系如图10所示。同一$\sigma _l^2$下,随着传输距离的增加,系统误码率达到极限值,所需信噪比也在增加,且所需信噪比与传输距离呈线性关系。在相同传输距离下,湍流对数强度方差越大的复合信道,极限误码率越大,GMSK调制所需的信噪比也越大。

      Figure 10.  Relationship between different transmission distances and SNR in composite channel

      图11所示为复合信道下,不同湍流对数强度方差$\sigma _l^2$与极限误码率的关系。可以看出,随着湍流对数强度方差的增大,UWOC系统的极限误码率呈非线性增加,在湍流对数强度方差较小和较大时,极限误码率变化较慢,因为在湍流对数强度方差较小时,系统误码率由传输距离和高斯噪声决定,当信噪比较高时,误码率可达到0,变化较慢。湍流对数强度方差较大时,湍流噪声严重影响信号质量,此时误码率完全由湍流噪声决定,系统极限误码率已接近正常通信极限,因此极限误码率变化较慢。但是在中强度区域,极限误码率与湍流对数强度方差呈线性关系,因为系统的极限误码率由传输距离、高斯噪声和湍流强度共同决定。

      Figure 11.  Relationship between turbulence logarithmic intensity variance and limit BER in composite channel

    • 文中研究了水下衰减信道特性和Gamma-Gamma型湍流信道特性,采用接受拒绝算法,生成了湍流信道随机噪声的时域信号,建立了水下复合信道的无线光通信系统模型。根据GMSK调制方法,仿真GMSK调制波形,并根据无线光通信系统模型仿真传输后的信号波形,然后采用一比特差分解调算法将接收波形恢复成原始信号,通过对比解调信号波形与原始输入信号波形,分析复合信道对系统误码率性能的影响。研究结果表明,在无湍流效应的水下信道中,OOK调制、PPM调制和GMSK调制的误码率在一定信噪比下均可达到${\text{1}}{{\text{0}}^{-3}}$,但GMSK调制较优于OOK调制和PPM调制。在有湍流效应的信道下,长距离传输的OOK调制下的系统误码率极限值为${\text{3}} \times {\text{1}}{{\text{0}}^{-2}}$,已不能满足系统一般误码率要求,但PPM调制可满足系统误码率要求,GMSK调制仍然优于OOK调制和PPM调制。在水下复合信道中,GMSK调制可满足长距离无线光通信的误码率需求,湍流对数强度方差会影响无线光通信系统的误码率极限和传输距离。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return