Volume 51 Issue 10
Oct.  2022
Turn off MathJax
Article Contents

Wang Zhenbao, Feng Gang, Wu Yong, Zhang Lei, Fang Bolang, Wang Fei, Wang Ping, Wu Junjie. Detector array for measuring spot distribution of high power continuous and pulsed laser[J]. Infrared and Laser Engineering, 2022, 51(10): 20220064. doi: 10.3788/IRLA20220064
Citation: Wang Zhenbao, Feng Gang, Wu Yong, Zhang Lei, Fang Bolang, Wang Fei, Wang Ping, Wu Junjie. Detector array for measuring spot distribution of high power continuous and pulsed laser[J]. Infrared and Laser Engineering, 2022, 51(10): 20220064. doi: 10.3788/IRLA20220064

Detector array for measuring spot distribution of high power continuous and pulsed laser

doi: 10.3788/IRLA20220064
Funds:  National Defense Pre-research funding project(DH863111802)
  • Received Date: 2022-03-04
  • Rev Recd Date: 2022-04-05
  • Available Online: 2022-11-02
  • Publish Date: 2022-10-28
  • It is an important technical means to accurately evaluate the performance of laser system by measuring the spatio-temporal distribution of laser power density emitted to the far field and obtaining the key index parameters such as total power on the target, beam quality, power in the bucket and power-time curve. A method for measuring the spatio-temporal distribution of near infrared pulse laser power density based on photodetector array is introduced. The detector array can be used to measure laser spot parameters in the wavelength range of 900 nm to 1700 nm with dynamic range more than 2000 times. The detector array has the characteristics of good unit consistency and high measurement accuracy, large measurement area, and can meets the needs of pulse and continuous laser parameter measurement. The experimental results for performance of the detector array indicate that the deviation between the measured value and the laser output power is less than 5%, and the measurement results of laser spot distribution are accurate and reliable. The detector array has been successfully applied in the parameter test of several laser system, can be used as an effective technical scheme for the measurement of pulse and continuous laser spot parameters in response band.
  • [1] Ma Pengfei, Xiao Hu, Leng Jinyong, et al. 4 kW near single mode output of narrow linewidth fiber laser [J]. Infrared and Laser Engineering, 2021, 50(1): 20200421. (in Chinese)
    [2] Dang Wenjia, Li Zhe, Li Yuting, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber laser [J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi:  10.37188/CO.2019-0208
    [3] Liu Youqiang, Cao Yinhua, Li Jing, et al. 5 kW fiber coupling diode laser for laser processing [J]. Optics and Precision Engineering, 2015, 23(5): 1279-1287. (in Chinese) doi:  10.3788/OPE.20152305.1279
    [4] Wu Jian, Ma Yanxing, Ma Pengfei, et al. 20 kW high power output of fiber laser coherent synthesis [J]. Infrared and Laser Engineering, 2021, 50(9): 20210621. (in Chinese)
    [5] Chen Tianyu, Gu Mingfei. Stoma suppression of laser sintering conductive circuit [J]. Optics and Precision Engineering, 2020, 28(9): 1958-1966. (in Chinese) doi:  10.37188/OPE.20202809.1958
    [6] Li Yanqing, Fan Haiqi, Zhu Kuiming, et al. Enhanced bonding strength between stainless steel and plastic by using laser scanning array structure [J]. Chinese Optics, 2020, 13(2): 313-322. (in Chinese) doi:  10.3788/co.20201302.0313
    [7] Zhang Haitao, Tang Rufeng, Li Zhulian, et al. Preprocessing method of laser ranging data based on array detecting technology [J]. Infrared and Laser Engineering, 2020, 49(8): 20190561. (in Chinese)
    [8] Li Yanna, Tang Litie, Xie Xiangyun, et al. Measuring far-field instantaneous facula intensity space-time distribution of solid-state laser [J]. Infrared and Laser Engineering, 2016, 45(8): 0817002. (in Chinese) doi:  10.3788/IRLA201645.0817002
    [9] Meng Jingjing, Yu Jin, Mo Zeqiang, et al. Laser spot illuminance measurement method based on scattering imaging [J]. Acta Optica Sinica, 2019, 39(7): 0712004. (in Chinese) doi:  10.3788/AOS201939.0712004
    [10] 苏毅, 万敏. 高能激光系统[M]. 北京: 国防工业出版社, 2004.

    Su Yi, Wan Min. High Energy Laser System[M]. Beijing: National Defense Industry Press, 2004. (in Chinese)
    [11] 孙承伟. 激光辐照效应[M]. 北京: 国防工业出版社, 2002.

    Sun Chengwei. Laser Irradiation Effects[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(323) PDF downloads(71) Cited by()

Related
Proportional views

Detector array for measuring spot distribution of high power continuous and pulsed laser

doi: 10.3788/IRLA20220064
  • State Key Laboratory of Laser Interaction with Matter (Northwest Institute of Nuclear Technology), Xi’an 710024, China
Fund Project:  National Defense Pre-research funding project(DH863111802)

Abstract: It is an important technical means to accurately evaluate the performance of laser system by measuring the spatio-temporal distribution of laser power density emitted to the far field and obtaining the key index parameters such as total power on the target, beam quality, power in the bucket and power-time curve. A method for measuring the spatio-temporal distribution of near infrared pulse laser power density based on photodetector array is introduced. The detector array can be used to measure laser spot parameters in the wavelength range of 900 nm to 1700 nm with dynamic range more than 2000 times. The detector array has the characteristics of good unit consistency and high measurement accuracy, large measurement area, and can meets the needs of pulse and continuous laser parameter measurement. The experimental results for performance of the detector array indicate that the deviation between the measured value and the laser output power is less than 5%, and the measurement results of laser spot distribution are accurate and reliable. The detector array has been successfully applied in the parameter test of several laser system, can be used as an effective technical scheme for the measurement of pulse and continuous laser spot parameters in response band.

    • 得益于光纤激光和固体激光技术的快速发展,数kW至数十kW的高功率激光[1-3]越来越成熟,同时通过功率合成技术[4]等,可以实现更高功率的输出。激光系统在出光功率越来越高的同时,出光时长也越来越长,目前在工业加工焊接[5]、材料改性[6]、安防反恐、国防军事方面得到广泛应用。针对激光系统开展的性能指标参数测试实验,是其最终走向实际应用的重要环节。相比于低功率激光参数测试,应用于高功率激光参数测试的相关设备需要面临强光辐照环境下的诸多技术难题。采用光电阵列探测器[7]测量激光系统远场功率密度时空分布信息,并据此分析得到靶总功率、光束质量、桶中功率、功率-时间(P-t)曲线等关键技术指标参数,是目前强激光参数测试中最常见的也是非常重要的一种技术手段。相比于传统的量热阵列法、散射成像法[8-9]、旋转取样法等光斑分布测量技术,光电阵列探测技术能够实时且定量地给出激光功率密度的时空分布变化情况[10],为强激光系统集成调试和技术指标分析评价提供了非常直观、方便快捷的解决方案。文中介绍了一种可同时实现脉冲/连续激光光斑功率密度时空分布测量的阵列探测器,其动态范围大于2000倍,并具有单元一致性好、探测视场大、测量精度高等特点,该阵列探测器已经在多套强激光系统性能参数测试试验中得到成功应用。

    • 光斑分布阵列探测器采用传统的光电探测器阵列技术路线,利用强光防护面板上的阵列取样孔实现对光斑的空间取样,取样光束经大倍数衰减取样单元后由光电探测器阵列实现光信号到电信号的转变,电信号再经过后端的调理放大和数字化后到达数据处理终端,利用图像显示和数据处理分析软件,实现光斑分布的实时显示和参数分析计算。

      光斑分布阵列探测器主要由强光防护靶板、阵列探测器、模拟信号调理电路、数据采集电路、图像显示和数据处理分析软件等部分组成,其原理框图如图1所示。

      Figure 1.  Principle diagram of spot distribution array detector

      强光防护靶板采用高熔点、高热导率的金属材料的制成,内部加工等距均匀分布的297个光束取样小孔,间距为1 cm (四周区域间距2 cm)。每一个取样小孔后面对应设置激光功率密度衰减结构,以满足光电探测器测量量程需要。光电探测器选用光伏型InGaAs探测器,其光谱响应范围900~1700 nm。

    • 强光防护面板是光斑分布探测器的非常关键的部件,直接关系到强光参数测量中探测器的安全性和可靠性。为避免防护面板在激光辐照升温后强度下降造光学取样孔变形,进而影响激光参数测量精度,选用耐热铝合金材料(在300 ℃以下使用强度无变化)。防护面板表面工艺需进行特殊处理,在尽量降低光热耦合效率的前提下,其设计还需考虑反射光对实验光路上其他设备和激光光源的影响。防护面板表面采用喷砂镀高反射膜层(短时间使用温度需小于320 ℃)的处理工艺,实测其反射系数大于95%。防护面板为三维轴对称圆形结构设计,在无其他热源的情况下,强光辐照时温度场分布T可按照经典Fourier热传导方程进行分析[11]

      式中:$\; \rho $$ {c_p} $$ k $分别为防护面板材料的密度、比热容和热导率;$ R $为防护面板材料表面对特定波长激光反射系数;$\; \beta $为防护面板材料激光能量耦合系数;I0为入射激光强度。

      在不考虑传导散热和对流换热的情况下,边界条件为:

      公式(2)为热辐射边界条件,$ \varepsilon $为材料表面发射效率,Tb为环境温度,$ \sigma $为Boltzmann常数。

      公式(3)为第一类边界条件,是强制边界条件,给定边界上的材料初始温度。

      防护面板的强光防护能力以膜层和材料使用强度温度上限为依据。数值模拟了在直径10 cm、功率密度500 W/cm2均匀光斑辐照下,防护面板整体温度场分布和温升极大值。防护面板温度分布为圆周中心对称分布,图2给出了其在不同激光辐照时长下温度场数值模拟四分之一截图。

      Figure 2.  Numerical simulation of temperature field of laser protection panel

      通过对激光辐照下防护面板温度场分布的数值模拟的结果可以看出,在给定的激光光斑尺寸和功率密度下,在60 s激光辐照时刻,防护面板最高温度为292 ℃,满足膜层和防护面板材料正常使用要求。

    • 为了验证最终设计的光斑分布探测器能够同时实现脉冲和连续两种工作模式的激光参数测试,实验中调整入射激光光源频率、占空比、激光功率等参数,并通过对光斑分布探测器测量后计算得到的结果与入射激光参数进行比较分析。

      实验选用中心波长1080 nm光纤激光器,在固定入射激光功率220 W、8%占空比情况下,改变激光器输出频率范围50~1000 Hz,分析光斑分布探测器对激光光源频率参数适用情况,结果如图3所示。在固定入射激光功率220 W、480 Hz重频情况下,改变激光器输出信号占空范围5%~35%,分析光斑分布探测器对激光光源占空比参数适用情况,结果如图4所示。

      Figure 3.  Relation curve between power measurement result of array detector and laser frequency

      Figure 4.  Power measurement results of array detector vs duty ratio

      图3结果表明,在200~1000 Hz激光重频变化范围内光斑分布探测器测量激光功率与入射激光功率测量结果偏差在±2.5%以内,其整体上适用于200 Hz重频以上脉冲激光和连续激光参数测试。

      图4结果表明,在固定入射激光功率和重复频率情况下,在5%~35%激光占空比变化范围内光斑分布探测器测量激光功率与入射激光功率测量结果偏差在±2%以内。分析认为,其整体上适用于大于5%占空比脉冲激光和连续激光参数测试。

      在固定入射激光频率480 Hz、50%占空比情况下,改变激光器输出频率范围0.5~1020 W,分析光斑分布探测器线性动态范围,结果如图5所示。

      Figure 5.  Linear dynamic range measurement curve of array detector

      图5结果表明,在2 000倍动态范围内光斑分布探测器测量激光功率与入射激光功率测量结果具有非常好的线性,偏差在±2.5%以内。

    • 测试光源选择连续输出的1080 nm光纤激光器,单模输出。测试过程中,为实现大光斑考核测试效果,采用扩束器对激光光束输出光束进行扩束,经过扩束系统后的激光功率为1 850 W。图6给出了探测器光斑分布二维和三维测量结果。

      Figure 6.  Measurement results of 2D and 3D spot distribution by array detector

      从测量结果分析,采用光斑分布探测器测量的激光功率密度空间分布为标准的高斯形状分布,也验证了光斑分布探测器整体一致性较好。同时,光斑分布探测器测量所得到的积分功率为1.83 kW,与激光器输出功率相比偏差为1.1%。

    • 光斑分布探测器通过实时测量激光功率密度时空分布参数,进而计算得到激光器输出总功率、功率时间曲线、光束质量等重要指标参数,是目前激光系统指标测试的重要测试设备。针对当前不同工作体制的激光系统参数测试的现实需求,解决了高空间分辨强光辐照环境情况下阵列探测器的强光防护等技术难题,设计并实现的高功率激光光斑探测器,可以同时满足连续和脉冲两种体制激光系统参数测试需求。通过对两种体制激光参数测试的实验验证,表明该阵列探测器具有大动态范围(大于2000倍)、测量精度高(功率测量精度优于5%)等技术优势,并且单元一致性好、测量面积大,已经在多套近红外激光系统参数测试试验中得到成功应用,可以作为响应波段内(900~1700 nm)的脉冲/连续激光光斑参数测试提供有效的解决方案。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return