Volume 51 Issue 6
Jul.  2022
Turn off MathJax
Article Contents

Cheng Xin, Jiang Huawei, Feng Yan. Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220127. doi: 10.3788/IRLA20220127
Citation: Cheng Xin, Jiang Huawei, Feng Yan. Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220127. doi: 10.3788/IRLA20220127

Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)

doi: 10.3788/IRLA20220127
Funds:  National Key Research and Development Program of China(2020YFB1805900,2020YFB0408300)
  • Received Date: 2022-02-24
  • Rev Recd Date: 2022-04-12
  • Available Online: 2022-10-12
  • Publish Date: 2022-07-05
  • In recent years, high-power single-frequency (SF) erbium-doped fiber lasers with narrow linewidth and low noise have been intensively studied, driven by application requirements in the fields of coherent detection, lidar, laser cooling and gravitational wave detection. The research progresses of high-power SF erbium-doped fiber lasers were reviewed in this paper, including SF erbium-doped fiber lasers and high-power SF erbium-doped fiber amplifiers. The development trend and challenges of the high-power SF erbium-doped fiber lasers were analyzed, and the next development direction was prospected.
  • [1] Bellemare A. Continuous-wave silica-based erbium-doped fiber lasers [J]. Progress in Quantum Electronics, 2003, 27(4): 211-266. doi:  10.1016/S0079-6727(02)00025-3
    [2] Wagener J L, Wysocki P F, Digonnet M J F, et al. Effects of concentration and clusters in erbium-doped fiber lasers [J]. Optics Letters, 1993, 18(23): 2014-2016. doi:  10.1364/OL.18.002014
    [3] Yang Z, Li C, Xu S, et al. Single-Frequency Fiber Lasers[M]. Singapore: Springer Nature, 2019.
    [4] Morkel P R, Cowle G J, Payne D N. Travelling-wave erbium fiber ring laser with 60 kHz linewidth [J]. Electronics Letters, 1990, 26(10): 632-634. doi:  10.1049/el:19900414
    [5] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fiber ring-laser with 1.4 kHz linewidth [J]. Electronics Letters, 1990, 26(24): 2033-2035. doi:  10.1049/el:19901312
    [6] Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser [J]. Optics Letters, 1991, 16(6): 387-389. doi:  10.1364/OL.16.000387
    [7] Schmuck H, Pfeiffer T, Veith G. Widely tunable narrow linewidth erbium doped fiber ring laser [J]. Electronics Letters, 1991, 27(23): 2117-2119.
    [8] Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diode-pumped tunable erbium-doped fiber laser with linewidth less than 5.5 kHz [J]. Electronics Letters, 1991, 27(23): 2148-2149. doi:  10.1049/el:19911330
    [9] Cheng Y, Kringlebotn J T, Loh W H, et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter [J]. Optics Letters, 1995, 20(8): 875-877. doi:  10.1364/OL.20.000875
    [10] Song Y W, Havstad S A, Starodubov D, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG [J]. IEEE Photonics Technology Letters, 2001, 13(11): 1167-1169. doi:  10.1109/68.959352
    [11] Chen H X, Babin F, Leblanc M, et al. Widely tunable single-frequency erbium-doped fiber lasers [J]. IEEE Photonics Technology Letters, 2003, 15(2): 185-187. doi:  10.1109/LPT.2002.806833
    [12] Chien H C, Yeh C H, Lee C C, et al. A tunable and single-frequency s-band erbium fiber laser with saturable-absorber-based autotracking filter [J]. Optics Communications, 2005, 250(1): 163-167.
    [13] Yeh C H, Lin M C, Chi S. Stabilized and wavelength-tunable s-band erbium-doped fiber ring laser with single-longitudinal-mode operation [J]. Optics Express, 2005, 13(18): 6828-6832. doi:  10.1364/OPEX.13.006828
    [14] Polynkin A, Polynkin P, Mansuripur M, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 µm [J]. Optics Express, 2005, 13(8): 3179-3184. doi:  10.1364/OPEX.13.003179
    [15] Yang X X, Zhan L, Shen Q S, et al. High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber [J]. IEEE Photonics Technology Letters, 2008, 20(9-12): 879-881.
    [16] Zhang J L, Yue C Y, Schinn G W, et al. Stable single-mode compound-ring erbium-doped fiber laser [J]. Journal of Lightwave Technology, 1996, 14(1): 104-109. doi:  10.1109/50.476143
    [17] Lee C C, Chi S. Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback [J]. Optics Letters, 2000, 25(24): 1774-1776. doi:  10.1364/OL.25.001774
    [18] Lee C C, Chen Y K, Liaw S K. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission [J]. Optics Letters, 1998, 23(5): 358-360. doi:  10.1364/OL.23.000358
    [19] Xin Z, Ning Hua Z, Liang X, et al. Stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking [J]. Journal of Lightwave Technology, 2007, 25(4): 1027-1033. doi:  10.1109/JLT.2007.891458
    [20] Yeh C H, Huang T T, Chien H C, et al. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation [J]. Optics Express, 2007, 15(2): 382-386. doi:  10.1364/OE.15.000382
    [21] Pan S, Yao J. A Wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability [J]. IEEE Photonics Technology Letters, 2010, 22(6): 413-415. doi:  10.1109/LPT.2010.2040996
    [22] Salehiomran A, Rochette M. An all-pole-type cavity based on smith predictor to achieve single longitudinal mode fiber lasers [J]. IEEE Photonics Technology Letters, 2013, 25(21): 2141-2144. doi:  10.1109/LPT.2013.2282353
    [23] Feng T, Yan F, Peng W, et al. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure [J]. Laser Physics Letters, 2014, 11(4): 045101. doi:  10.1088/1612-2011/11/4/045101
    [24] Yang C, Cen X, Xu S, et al. Research progress of single-frequency fiber laser [J]. Acta Optica Sinica, 2021, 41(1): 0114002. (in Chinese) doi:  10.3788/AOS202141.0114002
    [25] Yang C, Xu S, Li C, et al. Research progress of 1.5 μm-band CW single-frequency fiber laser [J]. Scientia Sinica Chimica, 2013, 43(11): 1407-1417. (in Chinese) doi:  10.1360/032013-292
    [26] Fu S J, Shi W, Feng Y, et al. Review of recent progress on single-frequency fiber lasers invited [J]. Journal of the Optical Society of America B-Optical Physics, 2017, 34(3): A49-A62. doi:  10.1364/JOSAB.34.000A49
    [27] Lai W, Ma P, Xiao H, et al. High-power narrow-linewidth fiber laser technology [J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. (in Chinese) doi:  10.11884/HPLPB202032.200186
    [28] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser [J]. IEEE Photonics Technology Letters, 1991, 3(7): 613-615. doi:  10.1109/68.87930
    [29] Ball G A, Morey W W. Compression-tuned single-frequency Bragg grating fiber laser [J]. Optics Letters, 1994, 19(23): 1979-1981. doi:  10.1364/OL.19.001979
    [30] Zhang Y N, Zhang Y F, Zhao Q L, et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser [J]. Optics Express, 2016, 24(23): 26209-26214. doi:  10.1364/OE.24.026209
    [31] Yang C S, Guan X C, Lin W, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser [J]. Optics Express, 2017, 25(23): 29078-29085. doi:  10.1364/OE.25.029078
    [32] Spiegelberg C, Geng J, Hu Y, et al. Compact 100 mW fiber laser with 2 kHz linewidth [C]// Optical Fiber Communications Conference, 2003, 3: PD45-P1.
    [33] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003) [J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. doi:  10.1109/JLT.2003.822208
    [34] Polynkin P, Polynkin A, Mansuripur M, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique [J]. Optics Letters, 2005, 30(20): 2745-2747. doi:  10.1364/OL.30.002745
    [35] Qiu T, Suzuki S, Schulzgen A, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers [J]. Optics Letters, 2005, 30(20): 2748-2750. doi:  10.1364/OL.30.002748
    [36] Schulzgen A, Li L, Temyanko V L, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber [J]. Optics Express, 2006, 14(16): 7087-7092. doi:  10.1364/OE.14.007087
    [37] Pan Z, Cai H, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mw output power at 1535 nm and its polarization characteristics [J]. Chinese Optics Letters, 2010, 8(1): 52-54. doi:  10.3788/COL20100801.0052
    [38] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm [J]. Optics Express, 2010, 18(2): 1249-1254. doi:  10.1364/OE.18.001249
    [39] Chang S H, Hwang I K, Kim B Y, et al. Widely tunable single-frequency Er-doped fiber laser with long linear cavity [J]. IEEE Photonics Technology Letters, 2001, 13(4): 287-289. doi:  10.1109/68.917827
    [40] Kaneda Y, Hu Y, Spiegelberg C, et al. Single-frequency, all-fiber Q-switched laser at 1550 nm[C]// Proceedings of the Advanced Solid-State Photonics (TOPS), 2004.
    [41] Zhou R, Shi W, Petersen E, et al. Transform-limited, injection seeded, Q-switched, ring cavity fiber laser [J]. Journal of Lightwave Technology, 2012, 30(16): 2589-2595. doi:  10.1109/JLT.2012.2201446
    [42] Wan H D, Wu Z W, Sun X H. A pulsed single-longitudinal-mode fiber laser based on gain control of pulse-injection-locked cavity [J]. Optics Laser Technology, 2013, 48: 167-170. doi:  10.1016/j.optlastec.2012.09.029
    [43] Shi W, Leigh M A, Zong J, et al. High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in The C-Band and frequency conversion to THz generation [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 377-384. doi:  10.1109/JSTQE.2008.2010234
    [44] Leigh M, Shi W, Zong J, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core [J]. Applied Physics Letters, 2008, 92(18): 1-3.
    [45] Shi W, Petersen E B, Leigh M, et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band [J]. Opt Express, 2009, 17(10): 8237-8245. doi:  10.1364/OE.17.008237
    [46] Shi W, Petersen E B, Yao Z D, et al. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm [J]. Optics Letters, 2010, 35(14): 2418-2420. doi:  10.1364/OL.35.002418
    [47] Petersen E, Shi W, Chavez-pirson A, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses [J]. Applied Optics, 2012, 51(5): 531-534. doi:  10.1364/AO.51.000531
    [48] Liu Y, Liu J Q, Chen W B. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar [J]. Chinese Optics Letters, 2011, 9(9): 090604.
    [49] Lee W, Geng J, Jiang S, et al. 1.8 mJ, 3.5 kW single-frequency optica pulses at 1572 nm generated from an all-fiber MOPA system [J]. Optics Letters, 2018, 43(10): 2264-2267. doi:  10.1364/OL.43.002264
    [50] Zhang X, Diao W F, Liu Y, et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W [J]. Applied Optics, 2014, 53(11): 2465-2469. doi:  10.1364/AO.53.002465
    [51] Ball G A, Holton C E, Hullallen G, et al. 60-mW 1.5 μm single-frequency low-noise fiber laser MOPA [J]. IEEE Photonics Technology Letters, 1994, 6(2): 192-194. doi:  10.1109/68.275425
    [52] Pan J J, Shi Y. 166-mW single-frequency output power interactive fiber lasers with low noise [J]. IEEE Photonics Technology Letters, 1999, 11(1): 36-38. doi:  10.1109/68.736382
    [53] Jeong Y, Salm J K, Richardson D J, et al. Seeded erbium/ytterbium codoped fiber amplifier source with 87 W of single-frequency output power [J]. Electronics Letters, 2003, 39(24): 1717-1719. doi:  10.1049/el:20031110
    [54] Alam S U, Wixey R, Hickey L, et al. High power, single-mode, single-frequency DFB fiber laser at 1550 nm in MOPA configuration[C]//Proceedings of the Conference on Lasers and Electro-Optics, 2004 (CLEO), F, 2004.
    [55] Alegria C, Jeong Y, Codemard C, et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber [J]. IEEE Photonics Technology Letters, 2004, 16(8): 1825-1827. doi:  10.1109/LPT.2004.830520
    [56] Jeong Y, Sahu J K, Soh D B S, et al. High-power tunable single-frequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source [J]. Optics Letters, 2005, 30(22): 2997-2999. doi:  10.1364/OL.30.002997
    [57] Dubinskii M, Zhang J, Kudryashov I. Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling [J]. Applied Physics Letters, 2008, 93(3): 1-3.
    [58] Yang C S, Xu S H, Mo S P, et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA Laser at 1560 nm [J]. Optics Express, 2013, 21(10): 12546-12551. doi:  10.1364/OE.21.012546
    [59] Steinke M, Croteau A, Pare C, et al. Co-seeded Er3+: Yb3+ single frequency fiber amplifier with 60 w output power and over 90% TEM00 content [J]. Optics Express, 2014, 22(14): 16722-16730. doi:  10.1364/OE.22.016722
    [60] Bai X L, Sheng Q, Zhang H W, et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier [J]. IEEE Photonics Journal, 2015, 7(6): 6.
    [61] Creeden D, Pretorius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[C]//Proceedings of the Conference on Fiber Lasers XIII -Technology, Systems, and Applications, F, 2016.
    [62] De Varona O, Fittkau W, Booker P, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 Mode for next-generation gravitational wave detectors [J]. Optics Express, 2017, 25(21): 24880-24892. doi:  10.1364/OE.25.024880
    [63] Yang C S, Guan X C, Zhao Q L, et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA a 1.6 μm [J]. Optics Express, 2018, 26(10): 12863-12869. doi:  10.1364/OE.26.012863
    [64] Guan X C, Zhao Q L, Lin W, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping [J]. Photonics Research, 2020, 8(3): 414-420. doi:  10.1364/PRJ.383174
    [65] Xue M Y, Gao C X, Niu L Q, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm [J]. Laser Physics, 2020, 30(3): 035104. doi:  10.1088/1555-6611/ab67ce
    [66] Darwich D, Bardin Y V, Goeppner M, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm [J]. Applied Optics, 2021, 60(27): 8550-8555. doi:  10.1364/AO.435274
    [67] Kuhn V, Kracht D, Neumann J, et al. Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection[C]//Proceedings of the Conference on Fiber Lasers IX - Technology, Systems, and Applications, 2012.
    [68] Fujisaki A, Matsushita S, Kasai K, et al. An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser [J]. Optics Express, 2015, 23(2): 1081-1087. doi:  10.1364/OE.23.001081
    [69] Dong J Y, Zeng X, Cui S Z, et al. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm [J]. Optics Express, 2019, 27(24): 35362-35367. doi:  10.1364/OE.27.035362
    [70] Alam S, Yla-jarkko K H, Grudinin A B. High power, single frequency DFB fiber laser with low relative intensity noise[C]// Proceedings of the 2003 Conference on Lasers and Electro-Optics Europe (CLEO/Europe 2003) (IEEE Cat No03 TH8666), 2003: 618.
    [71] De Varona O, Steinke M, Neumann J, et al. All-fiber, single-frequency, and single-mode Er3+: Yb3+ fiber amplifier at 1556 nm core-pumped at 1018 nm [J]. Optics Letters, 2018, 43(11): 2632-2635. doi:  10.1364/OL.43.002632
    [72] Wang S, Liu Z, Zhao Z, et al. 18 W Single-frequency 1550 nm Er: Yb co-doped fiber amplifier cladding-pumping at 1018 nm [J]. Optics Communications, 2020, 464: 125498. doi:  10.1016/j.optcom.2020.125498
    [73] Kuhn V, Kracht D, Neumann J, et al. Dependence of Er: Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength [J]. Optics Letters, 2010, 35(24): 4105-4107. doi:  10.1364/OL.35.004105
    [74] Sobon G, Sliwinska D, Kaczmarek P, et al. Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator [J]. Optics Communications, 2012, 285(18): 3816-3819. doi:  10.1016/j.optcom.2012.05.018
    [75] Dubinskii M, Zhang J, Ter-mikirtychev V. Record-efficient, resonantly-pumped, Er-doped single mode fiber amplifier [J]. Electronics Letters, 2009, 45(8): 400-401. doi:  10.1049/el.2009.0505
    [76] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers [J]. Optics Letters, 2013, 38(14): 2538-2541. doi:  10.1364/OL.38.002538
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(332) PDF downloads(158) Cited by()

Related
Proportional views

Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)

doi: 10.3788/IRLA20220127
  • 1. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2. Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
  • 3. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
Fund Project:  National Key Research and Development Program of China(2020YFB1805900,2020YFB0408300)

Abstract: In recent years, high-power single-frequency (SF) erbium-doped fiber lasers with narrow linewidth and low noise have been intensively studied, driven by application requirements in the fields of coherent detection, lidar, laser cooling and gravitational wave detection. The research progresses of high-power SF erbium-doped fiber lasers were reviewed in this paper, including SF erbium-doped fiber lasers and high-power SF erbium-doped fiber amplifiers. The development trend and challenges of the high-power SF erbium-doped fiber lasers were analyzed, and the next development direction was prospected.

    • 掺铒光纤激光由于波长位于大气透射窗口和人眼安全波段而具有极高的研究意义和应用潜力,一直是激光技术的研究热点 [1]。近些年,得益于光纤集成器件工艺的成熟,高功率掺铒光纤激光获得迅猛发展,当前在基础研究、光纤通信和医疗等领域发挥着重要应用。与此同时,单频光纤激光,即运行在单纵模下的激光,因具有窄线宽、低噪声等优异性能在相干光通信、激光雷达、光谱合成、激光冷却、原子捕获和引力波探测等领域有着非常广阔的应用前景。

      单频光纤激光器的实现方式有两大类:基于行波腔并结合窄带滤波器的单频激光结构和基于驻波腔的单频激光结构。前者腔长较长,结构复杂且容易出现跳模现象;相对而言,后者腔长短,结构简单,模式稳定,但腔长严格限制了增益光纤长度,往往需要铒离子高掺杂浓度光纤作为增益介质。但是单掺铒光纤中离子团簇严重影响其掺杂浓度 [2],往往采用多组分光纤来提高铒离子掺杂浓度。基于此方案的单频掺铒光纤激光器虽然已经获得了数百毫瓦的功率输出,但尚不满足某些领域的应用,功率的进一步提升需要采用主振荡功率放大(MOPA)方案。

      在高功率单频光纤放大器方面,受激布里渊散射(SBS)是限制功率提升的主要因素,通常采用增大光纤纤芯模场面积、缩短光纤长度、对光纤施加梯度温度或应力等方式提高其阈值。与其他单掺杂光纤有所不同的是,掺铒光纤中通常采用镱离子共掺方式提高铒离子的掺杂浓度并增加泵浦吸收系数。在铒镱共掺光纤放大器(EYDFA)中, 1 μm波段的放大自发辐射(ASE)是限制功率进一步增加的另一重要因素。针对此问题,已发展出众多方法,例如非峰值(off-peak)泵浦、共种子(co-seeding)泵浦以及同带(in-band)泵浦等。

      近年来,随着光纤激光技术的发展完善,单频掺铒光纤激光技术在高功率、窄线宽以及波长拓展等方面取得了重大进展。文中首先从行波腔和驻波腔两种腔型介绍了单频掺铒光纤激光器的发展现状;然后分别介绍了脉冲和连续两种不同工作模式下高功率单频掺铒光纤放大器的研究进展,分析了高功率单频掺铒光纤激光的发展趋势和面临的挑战;最后对该方向的进展进行了总结,并对单频掺铒光纤激光技术下一步的发展方向做了展望。

    • 产生单频激光的关键技术是建立一个单纵模运转的激光谐振腔,根据运行方式可分为行波腔和驻波腔。

    • 行波腔,采用较长的腔体,通过窄带滤波装置实现单纵模运转,典型装置如图1所示 [3]。采用额外的非泵浦掺铒光纤作为可饱和吸收体,当激光在此段光纤中干涉时引起驻波饱和效应,形成瞬态带通光栅滤波器,从而保证了稳定的单频激光运转。行波腔中无源可调谐滤波器可以提供粗波长选择,调谐范围比较宽。表1列出了基于行波腔结构的单频掺铒光纤激光器研究成果 [4-15]

      Figure 1.  Schematic diagram of a typical traveling wave cavity erbium-doped fiber laser

      StructureFiber typeYearInstitutionWavelength/nmPower/mWLinewidth/kHzRef.
      Traveling-wave cavityPhosphor-alumino-
      silicate fiber
      1990University of Southampton15551<60[4]
      Silica fiber1990NTT Transmission Systems Laboratories1549.3-1552.11.3<1.4[5]
      Silica fiber1991Telcordia Technologies1525-1565210[6]
      Silica fiber1991Alcatel-Lucent1528-15720.3210[7]
      Silica fiber1991AT&T Bell Laboratories1530-15753<5.5[8]
      Silica fiber1994University of Southampton15356.2<0.95[9]
      Silica fiber2001University of Southern California1522-1562100.75[10]
      Silica fiber2003EXFO Electro-Optical Engineering1510-15800.5-[11]
      Silica fiber2005National Chiao Tung University1482-15121.3-[12]
      Silica fiber2005National Chiao Tung University1480.6-1522.910-[13]
      Phosphate fiber2005University of Arizona15351000-[14]
      Silica fiber2008Shanghai Jiao Tong University1565867-[15]

      Table 1.  Research progress of single-frequency erbium-doped fiber lasers with traveling-wave cavity

      1990年,英国南安普顿大学的Morkel等在环形腔中通过控制激光单向运转消除空间烧孔效应,首次实现了掺铒光纤的单频1555 nm激光输出 [4]。输出功率为1 mW、线宽小于60 kHz。1991年,美国Telcordia Technologies的Smith等报导了在腔内插入声光滤波器实现了高达40 nm范围连续可调的单频掺铒光纤激光输出,中心波长在1545 nm,输出功率2 mW,激光线宽为10 kHz [6]。由于行波腔对温度漂移和其他外界干扰的高灵敏度,激光模式不易稳定。

      为改善行波腔掺铒单频激光器的跳模现象,可以通过引入可饱和吸收体来减少模式跳变。1994年,南安普顿大学的Cheng等人首次采用未泵浦的掺铒光纤作为可饱和吸收体实现稳定无跳模的单频掺铒光纤激光输出,中心波长为1535 nm,线宽为0.95 kHz,输出功率6.2 mW [9]

      此前的大部分报道都集中在C波段和部分L波段,而发展S波段的单频掺铒激光对于拓宽通信通道具有重要意义。2005年,National Chiao Tung University的Chien等人首次报导了S波段单频掺铒光纤环形腔激光器,可调谐范围覆盖1482~1512 nm,输出功率在1.3 mW [12]。同年该组人员将此波段单频掺铒光纤环形腔激光器输出功率提升到10 mW [13]

      此外还可以采用复合腔结构改善激光模式。复合腔激光器是由两个或者多个子腔组成,只允许一个满足所有子腔共振条件的激光纵模运转。为了实现这一目的,必须使各子腔之间不对称,即采用不同的腔长配置,从而延长激光的有效自由光谱范围,在过去的10多年里,有很多关于这一主题的报道 [16-23]

      但是受光纤中铒离子低掺杂浓度的制约,直接从环形腔输出的单频激光功率较低。直到2005年,美国亚利桑那大学的Polynkin等利用高掺铒磷酸盐光纤作为增益介质将环形腔单频激光器输出功率突破瓦量级,实现了700 mW输出功率下完全无跳模,但更高功率下仍有跳模发生 [14]。2008年,上海交通大学Yang等人在环形腔内加入放大结构获得了输出功率高达867 mW的单频激光 [15],这也是国内首次报导如此高功率的单频掺铒光纤激光器。

    • 根据结构区别,驻波腔分为分布反馈式(DFB)和分布布拉格反射式(DBR)两种腔型。

      DFB结构是将光纤布拉格光栅(FBG)直接写入有源光纤中,在光栅区域的中间引入相位变化,如图2所示 [3]。该结构可以作为一个超窄光谱滤波器来实现单频运转。然而,一方面由于腔长较短,另一方面在高泵浦功率下,相移光纤光栅腔内存在着严重的热效应,导致光栅折射率发生变化,进而导致光栅失相,致使单频DFB光纤激光器输出功率有限。

      Figure 2.  Structure diagram of erbium-doped DFB fiber laser [3]

      图3显示了DBR单频光纤激光器的典型结构 [3],该激光腔由一对窄带FBG与一段掺铒光纤组合而成,具有结构简单、紧凑等优点。对于单频运转工作,掺铒光纤的长度通常限制在几厘米,同样要求光纤具有较高的增益系数。

      Figure 3.  Structure diagram of erbium-doped DBR fiber laser [3]

      近年来,国内华南理工大学、天津大学和国防科技大学多个课题组先后对DBR单频光纤激光器的研究进展作了综述性报道 [24-27],这里针对驻波腔单频掺铒光纤激光器研究进展作简单说明。表2列出了近年来基于驻波腔结构的单频掺铒光纤激光器的研究成果 [28-39]

      StructureFiber typeYearInstitutionWavelength/nmPower/mWLinewidth/kHzRef.
      DBRSilica fiber1991United Technologies Research Center15485<47[28]
      DBRSilica fiber1994United Technologies Research Center1525-15573-[29]
      DBRPhosphate fiber2016South China University of Technology1527-15632.5<0.7[30]
      DBRPhosphate fiber2017South China University of Technology1603201.9[31]
      DBRPhosphate fiber2003NP Photonics1535100<2[32]
      DBRPhosphate fiber2004NP Photonics1560>200<2[33]
      DBRPhosphate fiber2005University of Arizona15351 900-[34]
      DBRPhosphate fiber2005University of Arizona15501600-[35]
      DFBPhosphate photonic crystal fiber2006University of Arizona15342300-[36]
      DBRPhosphate fiber2010Shanghai Institute of Optics and
      Fine Mechanics, CAS
      1535100<5[37]
      DBRPhosphate fiber2010South China University of Technology15353061.6[38]
      Linear cavitySilica fiber2001Electronics and Telecommunications
      Research Institute
      1525-15650.08<4.6[39]

      Table 2.  Research progress of single-frequency erbium-doped fiber lasers with standing-wave cavity

      第一个DBR结构的单频掺铒光纤激光器早在1991年被演示[28],利用掺铒锗铝硅酸盐光纤作为增益介质,但受铒离子浓度制约,激光输出功率只有5 mW。在波长拓展方面,1994年,美国United Technologies Research Center的Ball等人通过对增益光纤施加纵向应力实现了32 nm的可调谐单频激光输出,覆盖1525~1557 nm波长范围 [29]。2017年,华南理工大学Yang等人报道了利用1.6 cm铒镱共掺磷酸盐光纤作为增益介质的DBR单频激光器,通过优化光栅参数获得了输出功率为20 mW、线宽为1.9 kHz的1603 nm单频激光,这也是首次实现1600 nm以上波长的单频掺铒光纤激光器 [31]

      驻波腔结构单频掺铒光纤激光器的功率提升主要得益于铒镱共掺磷酸盐光纤的发明。2003年,美国NP Photonics公司Spiegeberg等基于高浓度铒镱共掺磷酸盐光纤首次报道了百毫瓦功率量级的单频掺铒光纤激光器 [32],工作波长为1535 nm,线宽小于2 kHz,并于次年将单频激光功率提升到200 mW [33]。随着共掺双包层磷酸盐光纤和包层泵浦技术的发展,驻波腔单频掺铒光纤激光器输出功率提升到瓦量级[34-35]

    • 虽然单频光纤激光器已经获得高达瓦量级的激光输出,但受腔长和热效应的限制,功率的进一步提升必须采用MOPA方案。下面分别就脉冲和连续两种不同工作模式介绍高功率单频掺铒光纤放大器的最新研究进展。

    • 脉冲单频掺铒光纤激光在激光测距、光纤传感和相干激光雷达等领域有着不可替代的应用。考虑到单频激光器的单纵模振荡特性,实现脉冲工作的直接方法是周期性地切换腔的损耗,即调Q光纤激光器。

      早在2004年,美国NP Photonics公司的Kaneda等通过在DBR腔内加入压电陶瓷(PZT)来产生压致双折射,主动调Q实现了峰值功率为25 W、脉宽12 ns的1550 nm脉冲单频激光输出[40]。2012年,美国伊利诺伊大学Zhou等人报告了一种连续单频激光注入的环形腔主动调Q脉冲单频掺铒激光器 [41]。同年,东南大学Wan等在参考文献[42]中进行了类似的工作,通过控制环形腔内增益大小和耦合器的耦合比来实现调Q,实现了线宽7 kHz、峰值功率40 W的1550 nm纳秒激光。

      除了Q开关,还有其他方案可以实现单频掺铒光纤激光在脉冲模式下工作。最简单的方法是利用脉冲激光源泵浦单频激光腔。例如,Barmenkov等在参考文献[40]中报道了利用脉冲调制后的泵浦激光器泵浦DBR结构的单频掺铒光纤激光器,实现了线宽约为500 kHz的单频脉冲激光输出。此外,利用外部声光调制器(AOM)或电光调制器(EOM)直接调制连续波单频激光器的强度也是获得脉冲源的一种方法[43-44]。但其缺点是外部调制器的传输损耗大,损伤阈值低,从而限制了脉冲激光器的峰值功率。

      2009年,美国NP Photonics公司的Shi等人利用参考文献[40]中相同的方法研制了一种1538 nm调Q DBR结构的单频掺铒光纤激光器,输出脉冲宽度为160 ns,重复频率为20 kHz。利用上述DBR结构的激光器作为种子源,采用三级掺铒光纤放大器组成的MOPA系统,实现了单脉冲能量为54 μJ、峰值功率为332 W的单频保偏脉冲激光输出。其中第三级采用12 cm长、芯/包层直径为15/125 μm的保偏铒镱共掺磷酸盐光纤作为增益介质来抑制放大过程中的SBS效应 [45]。并于次年在此结果基础上增加第四级保偏铒镱共掺磷酸盐光纤放大器(芯/包层直径为25/400 μm),在1530 nm波长实现了单脉冲能量为0.126 mJ、峰值功率1.2 kW单频脉冲输出,并指出此放大器可以工作在C波段任意波长 [46]。更进一步,该课题组利用相同结构将1550 nm波段脉冲单频光纤激光器峰值功率提高到128 kW,3 ns脉冲下单脉冲能量可达0.38 mJ [47]。类似的,2011年,中国科学院上海光学精密机械研究所Liu等采用三级MOPA结构(第三级采用6 m芯/包层直径为25/300 μm大模场铒镱共掺光纤)放大AOM调制的单频脉冲激光,得到了平均功率为1.16 W、单脉冲能量为116 μJ的全光纤单频1533 nm激光脉冲输出[48]。2018年,美国AdValue Photonics公司W. Lee等人采用纤芯直径为45 μm大模场高浓度铒镱共掺硅酸盐光纤作为增益介质,将1572 nm波长处单频脉冲激光的能量提升至1.8 mJ的高记录水平 [49]

      虽然大模场光纤能有效提高SBS阈值,但其允许高阶横模的传输,降低了输出激光光束质量。提高SBS阈值的另外一种方法是沿增益光纤施加梯度温度或应力致使SBS增益谱产生频移,使其在增益光纤中不能得到有效放大。如2014年中国科学院上海光学精密机械与物理研究机所Zhang等在芯径为10 μm的保偏铒镱共掺光纤上施加纵向梯度应力将SBS阈值提高3.4倍,实现了重频10 kHz、脉宽200 ns、峰值功率361 W衍射极限的单频1540 nm激光输出[50]。这也是基于10 μm纤芯直径的单模窄线宽脉冲光纤激光器的最高峰值功率。

    • 对于连续波单频掺铒MOPA激光器,1994年,美国Raytheon Technologies公司的Ball等人基于1480 nm激光二极管(LD)泵浦单掺铒光纤放大器结构,首次演示了输出功率为60 mW单频掺铒光纤放大器[51]。随后,美国E-TEK Dynamics公司Pan等人利用类似的放大器结构实现了功率为166 mW的单频激光输出[52]

      在掺铒光纤放大器中,通常采用铒镱共掺光纤作为增益介质,其中镱离子具有敏化作用,并有助于提高铒离子的掺杂浓度。镱离子吸收带宽覆盖较大波长范围,有利于采用成熟的高功率9xx nm二极管激光泵浦。图4总结了近20年来连续单频掺铒光纤放大器功率发展进程的代表性工作 [53-69]

      Figure 4.  Power development process of high-power continuous-wave single-frequency erbium-doped fiber amplifiers

      2003年,南安普顿大学Alam等采用915 nm LD泵浦100 μm芯径的EYDF报道了第一个瓦量级单频掺铒光纤放大器 [70]。并于同年采用两级放大将单频激光功率提升至14 W [54]。随后,同单位Alegria等报道了83 W连续单频1552 nm掺铒光纤放大器 [55]。主放大器采用3.5 m D型大模场铒镱共掺磷酸盐光纤,975 nm LD作为泵浦激光。在250 W最高泵浦功率下获得了最高83 W单频激光输出,斜率效率约为34%。激光M2因子为2.0,非衍射极限输出特性是由于大芯光纤和单模光纤在熔接点的模场不匹配导致了高阶模产生。60 W功率下,输出激光线宽相对DFB种子源未展宽。在最高输出功率下,增益光纤上的高温负载导致涂覆层退化并最终导致了激光器损坏。从9xx nm泵浦激光到1.5 μm信号光转换带来的巨大量子亏损以热的形式耗散在系统中,这也是高功率放大器中亟待解决的问题。

      2005年,南安普顿大学Jeong等将连续单频掺铒光纤放大器功率提高到151 W [56]。其光路结构如图5所示,1530~1610 nm可调谐单频种子激光经过一级掺铒光纤放大器输出1.8 W,空间耦合进入主放大器。主放大器采用空间耦合的975 nm LD反向泵浦10 m芯/包直径为30/650 μm的EYDF。利用二向色镜分离1 μm的ASE。该系统在473 W泵浦功率下实现了最高151 W单频1563 nm激光输出,斜率效率约为35 %,125 W 1546~1566 nm 范围内可调谐激光输出。虽然大芯径光纤有效提高了SBS阈值,但高功率下后向1 μm ASE功率可达70 W,这无疑给系统稳定性带来了隐患。

      Figure 5.  Structure diagram of continuous-wave single-frequency erbium-doped fiber amplifier with 151 W output power [56]

      在铒镱共掺光纤放大器中,镱离子通过交叉弛豫过程向铒离子传递能量。然而,此方案显著的问题是1 μm波段的 ASE(Yb ASE)及寄生振荡限制了功率的提升。多年来,研究人员一直在积极寻找有效解决铒镱共掺光纤中Yb ASE问题的方法。如使用专门设计的长周期光纤光栅或光子晶体光纤来滤除Yb ASE,以及改变泵浦方式,如off-peak泵浦、co-seeding泵浦以及in-band泵浦等。滤除Yb ASE的方法无疑增大了系统的能量损耗,并且给系统的热耗散带来较大的挑战。下面主要介绍改变泵浦方式来抑制铒镱共掺光纤放大器中Yb ASE的方法。

      (1) Off-peak泵浦

      此方法是采用偏离EYDF吸收峰(976 nm)的激光作为泵浦源,典型的是的915 nm或940 nm。较低的吸收截面缓解了镱-铒能量转移的瓶颈问题,从而显著改善了Yb ASE问题。

      基于此,华南理工大学Yang等在2013年采用915 nm LD包层泵浦EYDF报道了单级10.9 W线偏振单频1560 nm 全光纤MOPA激光器 [58]。2016年,美国Bae Systems公司Creeden等采用940 nm LD作为泵浦激光对单频1560 nm光纤激光种子源进行放大。其结构如图6(a)所示,主放大级采用5 m芯/包直径为25/300 μm的EYDF,在410 W泵浦功率下获得了连续207 W的单频1560 nm光纤放大器 [61],斜率效率达50.5%,是9xx nm LD泵浦铒镱共掺光纤放大器的最高效率,输出功率随泵浦功率曲线如图6(b)所示。输出激光的M2为1.05。

      Figure 6.  Single-frequency EYDF amplifier with off-peak pumping scheme. (a) Diagram of structure; (b) Diagram of power curve [61]

      大模场铒镱共掺光纤在功率提升方面发挥了重要作用,但对于特殊应用,例如引力波探测,需要线偏振基横模输出的单频激光。2007年,德国汉诺威激光中心Omar等采用与参考文献[61]相同的结构报道了100 W线偏振TEM00模的单频1556 nm掺铒光纤放大器 [62]

      考虑到镱离子吸收截面在10xx nm波长下更小,可以进一步缓解了镱-铒能量转移的限制。2018年,Omar等首次报道了采用1018 nm光纤激光器纤芯泵浦的全光纤连续单频铒镱共掺1556 nm放大器。采用小于2 m长的铒镱共掺光纤获得了超过11 W的激光输出,效率超过48%。此泵浦方式对Yb ASE起到了很好的缓解作用,结合高质量1018 nm光纤激光器有望实现更高功率单频掺铒光纤激光输出 [71]

      总体来说,off-peak泵浦方案需要较长的EYDF,不利于抑制SBS;而且随着泵浦功率的增加,Yb ASE问题仍然不可避免。

      (2) Co-seeding泵浦

      该方式是在泵浦端引入辅助信号光或加入1 μm FBG回收镱离子发射带能量。典型的方案是将1 μm波段激光与1.5 μm波段单频激光共同注入铒镱共掺光纤放大器中,在输出端分光后得到高功率单频1.5 μm激光[72-74]

      2014年,德国汉诺威激光中心基于此报道了60 W单频1554 nm大模场铒镱共掺光纤放大器 [59]。其结构图如图7(a)所示,采用反向泵浦结构,在泵浦端将1 μm的种子激光耦合入EYDF,泵浦激光采用976 nm LD。在正向和后向分别测试放大后的1554 nm激光和1 μm波段激光,输出功率曲线如图7(b)所示,在210 W的泵浦功率下实现了61 W的单频激光输出,其中TEM00模占比高达90%。同时,1.0 μm波段激光高达40 W,斜率效率在1.5 μm处约为30%,在1.0 μm处约为23%。

      Figure 7.  Single-frequency EYDF amplifier with co-seeding pumping scheme. (a) Diagram of structure; (b) Diagram of power curve [59]

      类似的,采用EYDF放大单频1.6 μm波段激光时,铒离子波段的ASE也会成为限制信号光功率提升的重要因素 [63],1.5 μm波段激光作为辅助信号显得尤为重要。近年来,华南理工大学的Guan等在该波长单频掺铒光纤放大器方面做出了重要贡献 [64]。在1603 nm单频掺铒光纤放大器中加入C波段闲置光作为co-seeding泵浦,获得了功率高达52.6 W 线宽为5.2 kHz连续激光输出,斜率效率高达30.4%。

      co-seeding泵浦方式与off-peak泵浦面临同样的问题,需要更长的铒镱共掺光纤,降低了SBS阈值。

      (3) In-band泵浦

      此泵浦方案是采用波长位于铒离子吸收带的激光作为泵浦激光,如1480 nm、1532 nm光源,避开镱离子的吸收发射过程。由于铒离子对该波长的高吸收可以显著缩短EYDF长度从而提高SBS阈值;另一方面,较低的量子损耗也降低了散热系统的要求。

      早在2008年,美国Army Research Laboratory的Dubinski等首次报道了同带泵浦掺铒光纤单频放大器[57]。采用1530 nm LD包层泵浦9.5 m芯/包直径为20/125 μm单掺铒光纤,获得了9.3 W近衍射极限的单频激光输出,光光转换效率33%。次年该课题组利用1476 nm LD泵浦单掺铒光纤放大单频1560 nm激光,将同带泵浦光光转换效率提高到85% [75]

      该方法最主要的问题是高功率泵浦激光较难获得。但随着拉曼激光技术的发展,1480 nm拉曼光纤激光器的功率输出突破300 W [76]。2015年,日本Furukawa Electric公司Akira等利用五阶级联拉曼光纤激光器获得1480 nm激光,再泵浦6 m单掺铒光纤报道了11.6 W 6 kHz单频1538 nm光纤放大器 [68]。2019年,笔者所在的课题组利用掺磷光纤作为拉曼增益光纤,从1064 nm两阶级联拉曼得到结构简单紧凑的1480 nm拉曼光纤激光器,同带泵浦单频掺铒光纤放大器 [69],光路结构如图8(a)所示。单频1560 nm种子源采用商用DFB光纤激光器,输出功率40 mW,线宽小于0.1 kHz。经过预放大器放大至1.5 W,与1480 nm光纤激光耦合到2.5 m保偏芯/包直径为12/125 μm的EYDF中。功率曲线图如图8(b)所示,在60.6 W的1480 nm激光泵浦下获得最高49.8 W的连续单频1560 nm激光输出,斜率效率高达79.7%。这也是该芯径EYDF报道的最高功率单频激光。

      Figure 8.  Single-frequency EYDF amplifier with in-band pumping scheme. (a) Diagram of structure; (b) Diagram of power curve [69]

    • 文中简要介绍了单频掺铒光纤激光技术的研究进展。结合单频激光的产生腔型介绍了单频掺铒光纤激光器的发展历程;根据脉冲和连续两种工作模式分别介绍了高功率单频掺铒光纤放大器的研究进展,详细分析了铒镱共掺光纤高功率放大器中有效改善Yb ASE问题的几种方案。

      单频掺铒光纤激光技术作为发展最早、应用最广泛的激光技术,经过几十年的发展,虽然已经实现了数百瓦、线宽百赫兹、波长调谐范围为数十纳米的性能,但其发展远不及镱、铥等稀土离子掺杂单频光纤激光器迅速。究其原因主要包括:采用常规9xx nm大功率二极管激光泵浦时近40%的量子亏损、相对而言面向高功率激光应用的掺铒光纤成熟度较低。

      高功率单频掺铒光纤激光未来发展可从以下几点展开:

      (1) 发展新材料

      掺铒光纤激光功率受限的根本原因在于硅基光纤铒离子的掺杂浓度受限。目前也发展出多组分软玻璃光纤能够实现稀土离子高浓度掺杂,但多组分光纤熔接损耗、系统稳定性等方面表现欠佳。研制与硅基光纤相兼容的新型高掺杂光纤无疑是高功率单频掺铒光纤激光的重要方向。

      (2)发展新结构

      类比单频掺镱光纤激光的发展趋势,SBS和传输模式不稳定(TMI)也将是限制单频掺铒光纤激光功率提升的两个主要因素。增大光纤模场面积有助于提高SBS阈值,却容易产生高阶模,不利于抑制TMI。需要综合考虑抑制这两个SBS和TMI的矛盾之处,研发新型特殊结构的增益光纤以同时提高这两个非线性阈值。

      (3)发展新泵浦激光

      9xx nm泵浦带来的巨大量子亏损以热的形式在光纤中耗散,不利于系统稳定性。发展新型同带高功率泵浦激光有望成为突破单频掺铒光纤激光器功率输出的关键技术手段。

      未来单频掺铒光纤激光技术将向更高功率、更窄线宽的方向发展,面向实际应用需求,同时还需要保证全保偏光纤结构和近衍射极限输出。

Reference (76)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return