Volume 52 Issue 12
Dec.  2023
Turn off MathJax
Article Contents

Cao Shuqin, Huang Yabo, Chen Liangxian, Liu Jinlong, Wei Junjun, Lian Weiyan, Zhao Zhihong, Yang Zhenjing, Chen Xiaoyi, Peng Zhiyong, Xing Zhongfu, Li Chengming. Effect of La doping on structure and properties of Y2O3/Diamond films[J]. Infrared and Laser Engineering, 2023, 52(12): 20230240. doi: 10.3788/IRLA20230240
Citation: Cao Shuqin, Huang Yabo, Chen Liangxian, Liu Jinlong, Wei Junjun, Lian Weiyan, Zhao Zhihong, Yang Zhenjing, Chen Xiaoyi, Peng Zhiyong, Xing Zhongfu, Li Chengming. Effect of La doping on structure and properties of Y2O3/Diamond films[J]. Infrared and Laser Engineering, 2023, 52(12): 20230240. doi: 10.3788/IRLA20230240

Effect of La doping on structure and properties of Y2O3/Diamond films

doi: 10.3788/IRLA20230240
  • Received Date: 2023-04-19
  • Rev Recd Date: 2023-07-17
  • Available Online: 2023-12-22
  • Publish Date: 2023-12-22
  •   Objective  With its extremely high thermal conductivity, hardness and excellent infrared transmission properties, diamond is the most ideal material for infrared windows under extreme conditions. However, since the theoretical infrared transmittance of diamond is only 71%, further development of diamond surface anti-reflection coating has become a key step in the improvement of diamond infrared window. Compared with the traditional infrared anti-reflection coating, Y2O3 has lower refractive index, wider anti-reflection band and stable optical properties, which is an ideal diamond infrared anti-reflection coating, but poor mechanical properties make it difficult to prevent external damage in extreme environments. In the current study, the mechanical properties can be changed by changing the phase structure of the anti-reflection membrane itself, but it is difficult to improve the mechanical properties by changing the growth parameters for phase regulation. Rare-earth doping can effectively change the structure of the matrix material and improve its performance.   Methods  The Y2O3 film deposited by the magnetron sputtering method has strong adhesion and high purity of the membrane layer. Moreover, the oxygen-argon ratio can be controlled in the process of preparing the oxide film, which is more conducive to obtaining the oxide film close to the stoichiometric ratio. Therefore, undoped and La-doped Y2O3 films were prepared on mono-crystalline silicon and poly-crystalline CVD diamond by magnetron sputtering method. During the RF reaction sputtering, the target atoms of Ar plasma react with the reaction gas O2, and the Y2O3 film is deposited on the substrate surface. By adjusting the RF sputtering power of the doped element La target, the doping content of La element is adjusted.   Results and Discussions   The composition, structure and properties of La-doped Y2O3 anti-reflection films were studied. X-ray photoelectron spectroscopy (XPS) and graze-incidence X-ray (GIXRD) studies show that metal La interacts with O and exists in Y2O3 films in the form of La-O compound. The undoped Y2O3 films show cubic (222) columnar crystal orientation, and with the increase of La doping power, the films show monoclinic Y2O3 crystal orientation (111). It can be observed by scanning electron microscopy (SEM) that Y2O3 films with different La doping power show columnar crystal structure and good crystal quality. Atomic force microscopy (AFM) confirms that La-doped Y2O3 films have lower roughness (RMS) values than undoped Y2O3 films. In the La-doped Y2O3 films, the grain size of the columnar crystals decreases significantly with the increase of La concentration. In the long-wave infrared range of 8-12 μm, the maximum transmittance of La-doped Y2O3/Diamond film is 80.3%, which is 19.8% higher than that of CVD diamond film. La-doped Y2O3 films with fine particles have higher hardness and elastic modulus. The hardness increases from undoped (12.02±0.37) GPa to (14.14±0.39) GPa, and the elastic modulus increases from (187±14) GPa to (198±7.5) GPa.   Conclusions  After La-doped Y2O3 film, the grain was refined and the roughness decreased. La-doped Y2O3 film was subjected to the maximum transmittance increasing from 67% to 80.3% (LWIR), and the optical performance was significantly improved. In addition, the mechanical properties of the La-doped Y2O3 films were improved. The main reason for this phenomenon is mainly attributed to the presence at the grain boundary of Y2O3 film after La doping, which hinders the growth of Y2O3 grains to play the strengthening of fine crystals and improves the mechanical properties of the film. The results show that compared with the undoped Y2O3 films, the La-doped Y2O3 films obtain higher hardness through fine crystal strengthening under the condition of keeping higher infrared transmittance, which is conducive to improving the erosion properties of sand and rain erosion.
  • [1] 黑立富, 闫雄伯, 朱瑞华, 等. 金刚石自支撑膜的高温红外透过性能[J]. 材料工程, 2017, 45(02): 1-6.

    Hei Lifu, Yan Xiongbo, Zhu Ruihua, et al. High-temperature infrared transmission of free-standing diamond films [J]. Journal of Materials Engineering, 2017, 45(2): 1-6. (in Chinese)
    [2] 刘金龙, 安康, 陈良贤, 等. CVD金刚石自支撑膜的研究进展[J]. 表面技术, 2018, 47(04): 1-10.

    Liu Jinlong, An Kang, Chen Liangxian, et al. Research progress of freestanding CVD diamond films [J]. Surface Technology, 2018, 47(4): 1-10. (in Chinese)
    [3] 贾鑫, 闫雄伯, 安康, 等. 自支撑CVD金刚石膜光学性能与热学性能相关性研究[J]. 表面技术, 2018, 47(04): 11-16.

    Jia Xin, Yan Xiongbo, An Kang, et al. Correlation between optical property and thermal property of free-standing CVD diamond films [J]. Surface Technology, 2018, 47(4): 11-16. (in Chinese)
    [4] 黄亚博, 陈良贤, 贾鑫, 等. CVD金刚石表面增透膜的研究进展[J]. 表面技术, 2020, 49(10): 106-117.

    Huang Yabo, Chen Liangxian, Jia Xin, et al. Research progress of anti-reflection films on CVD diamond surface [J]. Surface Technology, 2020, 49(10): 106-117. (in Chinese)
    [5] Kakuno K, Ito D, Fujimura N, et al. Growth process and interfacial structure of epitaxial Y2O3/Si thin films deposited by pulsed laser deposition [J]. Journal of Crystal Growth, 2002, 237: 481-497.
    [6] 李成明, 任飞桐, 邵思武, 等. 化学气相沉积(CVD)金刚石研究现状和发展趋势[J]. 人工晶体学报, 2022, 51(05): 759-780.

    Li Chengming, Ren Feitong, Shao Siwu, et al. Progress of chemical vapor deposition (CVD) diamond [J]. Journal of Synthetic Crystals, 2022, 51(5): 759-780. (in Chinese)
    [7] 冯寅楠, 黄亚博, 刘金龙, 等. 稀土红外增透膜的研究进展[J]. 稀有金属, 2019, 43(12): 1346-1356.

    Feng Yinnan, Huang Yabo, Liu Jinlong, et al. Research progress of rare earth infrared anti-reflection films [J]. Chinese Journal of Rare Metals, 2019, 43(12): 1346-1356. (in Chinese)
    [8] Yu Z, Liang L Y, Liu Z M, et al. Effects of sputtering pressure and post-metallization annealing on the physical properties of RF-sputtered Y2O3 films [J]. Journal of Alloys and Compounds, 2011, 509(19): 5810-5815. doi:  10.1016/j.jallcom.2011.02.127
    [9] Hua C Y, Chen L X, Li C M, et al. Effects of oxygen-to-argon ratio on crystalline structure and properties of Y2O3 anti-reflection films for freestanding CVD diamond [J]. Journal of Alloys and Compounds, 2017, 693(5): 468-473.
    [10] 闫锋, 刘正堂, 刘文婷, 等. 退火处理对Y2O3薄膜结构和光学性能的影响[J]. 材料导报, 2010, 24(16): 12-14+28.

    Yan Feng, Liu Zhengtang, Liu Wenting, et al. Effect of anneal treatment on structure and optical properties of yttrium trioxide thin films [J]. Materials Reports, 2010, 24(16): 12-14, 28. (in Chinese)
    [11] Hirata G A, Mckittrick J, Avalos-borja M, et al. Physical properties of Y2O3:Eu luminescent films grown by MOCVD and laser ablation [J]. Applied Surface Science, 1997, 113(C): 509-514.
    [12] Mathew C T. Tuning the optical and mechanical properties of Y2O3 ceramics by the inclusion of La3+ ion in the matrix for infrared transparent window applications [J]. International Journal of Advanced Research in Engineering and Technology (IJARET), 2019, 10(2): 1-13.
    [13] Zhang X, Gao S, Gui W H, et al. First-principles study of structure, mechanical and optical properties of La- and Sc-doped Y2O3 [J]. Journal of Rare Earths, 2019, 37(8): 879-885. doi:  10.1016/j.jre.2018.11.004
    [14] Huang Y B, Zhu X H, Cao S Q, et al. Microstructure and properties of La-doped Er2O3 anti-reflection films on CVD diamond [J]. Applied Surface Science, 2022, 602: 145-229.
    [15] Chopade S S, Barve S A, Raman K H T, et al. RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition [J]. Applied Surface Science, 2013, 285: 524-531. doi:  10.1016/j.apsusc.2013.08.087
    [16] Lu F X, He Q, Guo S B, et al. Sand erosion of freestanding diamond films prepared by DC arcjet [J]. Diamond & Related Materials, 2010, 19(7): 936-941.
    [17] Yang C, Fan H Q, Qiu S J, et al. Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation [J]. Journal of Non-Crystalline Solids, 2008, 355(1): 33-37.
    [18] Miller A J, Hudson M D, Dennis P V, et al. Metal oxynitride and diamond hard coatings for infrared windows [C]//Proceedings of SPIE, Window and Dome Technologies and Materials VI, 1999, 3705: 142-151.
    [19] Gaboriaud R J, Pailloux F, Paumier F. Characterisation of Y2O3 thin films deposited by laser ablation on MgO: why a biaxial epitaxy [J]. Applied Surface Science, 2002, 188(1-2): 29-35. doi:  10.1016/S0169-4332(01)00716-4
    [20] Lei P, Zhu J, Zhu Y K, et al. Evolution of composition, microstructure and optical properties of yttrium oxide thin films with substrate temperature [J]. Surface & Coatings Technology, 2013, 229: 226-230.
    [21] Tao J G, Batzill M. Ultrathin Y2O3 (111) films on Pt (111) substrates [J]. Surface Science, 2011, 605(19-20): 1826-1833. doi:  10.1016/j.susc.2011.06.021
    [22] Krawczyk M, Lisowski W, Pisarek M, et al. Surface characterization of low-temperature grown yttrium oxide [J]. Applied Surface Science, 2018, 437: 347-356. doi:  10.1016/j.apsusc.2017.12.121
    [23] Gougousi T, Chen Z. Deposition of yttrium oxide thin films in supercritical carbon dioxide [J]. Thin Solid Films, 2007, 516(18): 6197-6204.
    [24] Yu P, Zhang K, Huang H, et al. Oxygen vacancies dependent phase transition of Y2O3 films [J]. Applied Surface Science, 2017, 410: 470-478. doi:  10.1016/j.apsusc.2017.03.145
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(54) PDF downloads(13) Cited by()

Related
Proportional views

Effect of La doping on structure and properties of Y2O3/Diamond films

doi: 10.3788/IRLA20230240
  • 1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
  • 2. Henan Key Laboratory of Aeronautical Material and Applied Technology, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
  • 3. Tianjin Jinhang Institute of Technical Physics, Tianjin 300308, China

Abstract:   Objective  With its extremely high thermal conductivity, hardness and excellent infrared transmission properties, diamond is the most ideal material for infrared windows under extreme conditions. However, since the theoretical infrared transmittance of diamond is only 71%, further development of diamond surface anti-reflection coating has become a key step in the improvement of diamond infrared window. Compared with the traditional infrared anti-reflection coating, Y2O3 has lower refractive index, wider anti-reflection band and stable optical properties, which is an ideal diamond infrared anti-reflection coating, but poor mechanical properties make it difficult to prevent external damage in extreme environments. In the current study, the mechanical properties can be changed by changing the phase structure of the anti-reflection membrane itself, but it is difficult to improve the mechanical properties by changing the growth parameters for phase regulation. Rare-earth doping can effectively change the structure of the matrix material and improve its performance.   Methods  The Y2O3 film deposited by the magnetron sputtering method has strong adhesion and high purity of the membrane layer. Moreover, the oxygen-argon ratio can be controlled in the process of preparing the oxide film, which is more conducive to obtaining the oxide film close to the stoichiometric ratio. Therefore, undoped and La-doped Y2O3 films were prepared on mono-crystalline silicon and poly-crystalline CVD diamond by magnetron sputtering method. During the RF reaction sputtering, the target atoms of Ar plasma react with the reaction gas O2, and the Y2O3 film is deposited on the substrate surface. By adjusting the RF sputtering power of the doped element La target, the doping content of La element is adjusted.   Results and Discussions   The composition, structure and properties of La-doped Y2O3 anti-reflection films were studied. X-ray photoelectron spectroscopy (XPS) and graze-incidence X-ray (GIXRD) studies show that metal La interacts with O and exists in Y2O3 films in the form of La-O compound. The undoped Y2O3 films show cubic (222) columnar crystal orientation, and with the increase of La doping power, the films show monoclinic Y2O3 crystal orientation (111). It can be observed by scanning electron microscopy (SEM) that Y2O3 films with different La doping power show columnar crystal structure and good crystal quality. Atomic force microscopy (AFM) confirms that La-doped Y2O3 films have lower roughness (RMS) values than undoped Y2O3 films. In the La-doped Y2O3 films, the grain size of the columnar crystals decreases significantly with the increase of La concentration. In the long-wave infrared range of 8-12 μm, the maximum transmittance of La-doped Y2O3/Diamond film is 80.3%, which is 19.8% higher than that of CVD diamond film. La-doped Y2O3 films with fine particles have higher hardness and elastic modulus. The hardness increases from undoped (12.02±0.37) GPa to (14.14±0.39) GPa, and the elastic modulus increases from (187±14) GPa to (198±7.5) GPa.   Conclusions  After La-doped Y2O3 film, the grain was refined and the roughness decreased. La-doped Y2O3 film was subjected to the maximum transmittance increasing from 67% to 80.3% (LWIR), and the optical performance was significantly improved. In addition, the mechanical properties of the La-doped Y2O3 films were improved. The main reason for this phenomenon is mainly attributed to the presence at the grain boundary of Y2O3 film after La doping, which hinders the growth of Y2O3 grains to play the strengthening of fine crystals and improves the mechanical properties of the film. The results show that compared with the undoped Y2O3 films, the La-doped Y2O3 films obtain higher hardness through fine crystal strengthening under the condition of keeping higher infrared transmittance, which is conducive to improving the erosion properties of sand and rain erosion.

    • 随着红外探测技术的快速发展,对红外光学系统的光学性能[1]和力学性能[2]提出了越来越高的要求。CVD金刚石在红外波段具有一定的透过性,理论透过率71%,而且金刚石具有较高的抗热冲击性能[3],能够保证红外探测器在极端工作条件下的光学传输性能。但在实际应用中的金刚石受制备工艺和工作环境的影响,其透过率往往低于70%[4]。因此,需要采取一些措施来保证金刚石在严苛环境下的使用性能,其中最有效的途径就是在 CVD 金刚石表面镀制单层或多层薄膜,通过合理的膜系设计来提高金刚石的红外透过率,同时还能起到抗氧化保护的作用。

      Y2O3作为稀土氧化物,具有不完整的氟石型立方红绿柱石Mn2O3 结构,在2200 ℃以下它只有一种稳定的体心立方结构。由于 Y2O3 有较高的熔点、较高的机械强度和硬度、化学稳定性好等优良性能。Y2O3 薄膜在 10.6 μm 处折射率为 1.68,与金刚石的折射率有较好的配合,适合作为金刚石膜的表面增透、抗氧化涂层[5-7]

      一般来说,影响薄膜性能最主要的因素之一就是薄膜的沉积工艺。Yu等[8]研究随着溅射压力的降低,薄膜结晶度提高,致密化程度提高,薄膜的折射率和带隙都增大了,而漏电流密度减小。通过金属化后退火处理来减少Y2O3薄膜的缺陷,提高薄膜的电学性能。Hua等[9]研究了氧氩比对Y2O3薄膜结构和性能的影响,结果表明,Y2O3薄膜的反射指数随O2/Ar比的增加而降低,立方相的Y2O3薄膜具有较高的耐磨性和塑性变形能力。闫锋等[10]报道了磁控溅射制备的Y2O3薄膜,在800 ℃真空退火后,薄膜由原来的球状颗粒结构转变为柱状多晶结构,红外光学性能明显下降。 另一方面,掺杂也可以有效地改变基体材料的结构、力学和光学性能,提高使用性能。稀土元素具有相当特殊的电子结构,这意味着稀土掺杂体系可以用作激光介质、荧光、红外探测的光学窗口材料。例如,掺杂Nd3+和Eu3+的Y2O3分别可以用作激光增益介质材料和荧光屏荧光粉[11]。Mathew[12]通过电阻耦合烧结法制备了LaxY2−xO3的纳米结构材料,研究结果表明La3+的存在可以大大提高红外透明陶瓷的硬度。Zhang等[13]采用第一性原理计算方法,对Y2−xRxO3 (R=Sc或La, 0<x<0.1875)的力学和光学性能的计算结果表明,La或Sc掺杂的 Y2O3可以提高强度,从而提高其抗外部冲击的能力,提高硬度和机械韧性。笔者之前的工作证实了在 La 掺杂后以氧化物形式存在 的Er2O3 薄膜晶界,实现了细晶强化,且La 掺杂后的Er2O3 增透膜抗砂蚀性能优异[14]

      文中采用射频磁控溅射方法在CVD金刚石衬底上镀制未掺杂和不同功率La掺杂的Y2O3薄膜,研究了La掺杂前后Y2O3 薄膜的表面成分和晶体结构的变化,以及La掺杂功率对Y2O3/金刚石薄膜的红外光学性能和力学性能影响。

    • 文中采用射频磁控溅射技术,在(111)择优取向的多晶CVD金刚石衬底和(100)Si衬底的单侧沉积了未掺杂Y2O3和La掺杂的Y2O3薄膜。采用纯度为99.9%的Y和La金属靶材进行磁控溅射,本底真空为2.0×10−4 Pa,工作气体为Ar和O2,靶基距为8 cm。在沉积Y2O3薄膜前,通入Ar气对衬底进行偏压清洗,衬底偏置电压设置为800 V,清洗时间15 min。然后根据设定的参数进行预溅射,时间为20 min,沉积温度为400 ℃。在沉积过程中,沉积室的腔压为1.0 Pa,基底偏压设置为−100 V,氧与氩的比值为0.6/30。根据实际应用,波长为10.6 μm,543.5 nm处折射率为1.91进行减反射设计,计算出能够达到增透目的Y2O3薄膜的沉积厚度为1.38 μm。表1为Si衬底上未掺杂和La掺杂Y2O3的薄膜沉积工艺参数。

      SampleSputtering power/WO2/ArDeposition temperature/℃Substrate bias/VDeposition rate/nm·min−1
      LaY
      101800.6/30400−1005.09
      2404.61
      3504.65
      4604.68
      5805.06

      Table 1.  The deposition process parameters of the La-doped Y2O3 films

    • 采用单色Al Kα X射线源,用X射线光电子能谱(XPS)(PHI Quantera,Ulvac-Phi)对其表面化学状态进行了研究。为了消除电荷指向不定碳的C1s峰的风险,将C1s峰设为284.8 eV。原子力显微镜(AFM)图像由扫描探针显微镜(Cypher VRS)以Tapingd模式记录,扫描面积为1.0×1.0 μm2。采用Cu Kα源,入射角为1.5°,采用掠入射X射线衍射(GI-XRD)(TTRIII, Rigaku)对样品的晶体结构进行研究,扫描速度为10 (°)/min,扫描范围为10°~60°。用扫描电子显微镜(QUANTA FEG 250)观察薄膜的形貌。在连续刚度测量模式下,采用Nano-Indent XP系统测量试样的硬度和弹性模量。采用椭偏光谱仪(SE 850 DUV)对样品在300~1000 nm光谱范围内的折射率进行了估算。采用傅里叶变换红外光谱仪(Excalibur 3100, Varian)测定了扫描范围为4000~400 cm−1的红外透过率。

    • 图1是不同功率La掺杂Y2O3薄膜的XPS全谱图,从图1(a)中可以清楚地看到薄膜中除284.8 eV处标样的C峰外,只有La、O、Y元素的特征峰,说明薄膜纯度较高,沉积过程中并未引入其他杂质。样品的Y3d谱图(图1(b))中存在156.8 eV和158.6 eV两个特征峰,分别对应低能态Y3d5/2和高能态Y3d3/2,表明样品中存在Y-O键[15],不同样品的高强度峰位置没有明显变化。图1(c)为O1s谱图,在529.9 V结合能处观察到特征峰。但随着La掺杂溅射功率的增加,特征峰向结合能较低的529.4 eV移动,这是由于La-O键[16]的结合能较低。图1(d)显示了样品中的La的两个特征峰La3d3/2和La3d5/2,对应的结合能分别为850.1 eV和833.8 eV。Δ(La-O)=BE(La3dsn)−BE(O1s)为304 eV,表明金属La与O[17]相互作用。

      为了确定薄膜中元素的化学计量比,进一步对La掺杂功率为0 W、50 W和80 W样品Y3d和O1s高分辨窄谱图进行分峰拟合。薄膜Y3d谱经分峰拟合后如图2(a)、(c)、(e)所示,结合能为156.8 eV 和 158.6 eV的特征峰分别对应低能态的 Y3d5/2和高能态的Y3d3/2,说明制备的薄膜中 Y 原子已被氧化。此外,在结合能为159.6 eV处也有特征峰存在,这主要是由于Y2O3暴露在大气环境中与空气中水分结合形成Y-OH键[18-19]。薄膜O1s谱如图2(b)、(d)、(f)所示,结合能为529.9 eV、529.5 eV和529.4 eV的特征峰表明Y-O键的存在[20-22]。532.5、532.1、531.5 eV处的特征峰与吸附水形成的氢氧根有关[21,23-24],这与Y3d窄谱图中相应的Y-OH特征峰吻合。

      Figure 1.  XPS compositional analysis of La doped Y2O3 thin films with different powers. (a) XPS spectrum of La doped Y2O3 films with different powers; (b)-(d) Y3d, O1s, and La spectra of samples, respectively

      Figure 2.  Spectrum of La doped Y2O3 samples with different powers, Y3d: (a) 0 W, (c) 50 W, (e) 80 W and O1s: (b) 0 W, (d) 50 W, (f) 80 W

      文中采用灵敏度因子法, 计算方法如下式:

      式中:Cx为待测元素的原子分数;Ix为样品中待测元素最强峰的强度;Sx为样品中待测元素的灵敏度因子;I为样品中第i元素最强峰的强度;S为样品中第i元素的灵敏度因子。

      则O、Y原子浓度比${n}_{\rm O}$∶${n}_{\rm Y}$为:

      不同功率La掺杂Y2O3样品的计算结果如表2所示。

      0 W50 W80 W
      O1s60.01%61.38%63.06%
      Y3d39.99%38.62%36.94%
      nOnY1.501.591.71

      Table 2.  Calculation results of O1s and Y3d elements content

      由计算结果可看出掺杂后,O/Y原子比由1.5增加到1.71,因为刻蚀过程已经消除表面吸附氧的影响,所以基本可以判断有部分O与La结合形成化合物。

    • 图3为未掺杂Y2O3和La掺杂Y2O3薄膜的XRD图,测试采用掠入射方式对薄膜结构进行表征,入射角为1°,测试范围10°~60°。参考PDF卡片(PDF卡片:44-0399),2θ=29.2°、32.6°、33.8°、48.6°和57.7°的峰分别对应标准C-Y2O3 (222)、(321)、(400)、(440)和(622)强峰的位置和强度分布。B-Y2O3 (111)峰对应2θ=28.7°的位置。随着La掺杂功率的增加,薄膜晶体物相结构发生转变,La掺杂后新的单斜Y2O3相晶面(111)对应2θ=28.7º的位置出现,并且新的立方Y2O3相晶面(321)对应2θ=32.6º的位置出现,而未掺杂样品图谱中Y2O3立方(400)相逐渐消失。La3+离子半径(0.103 2 nm)大于Y3+离子半径(0.090 nm),随着La浓度的增加,衍射峰向较低衍射角移动,这是由于较大的La离子占据间隙位置导致d-间距的增加,随着LaxY2−xO3的生长受到La3+离子取代的限制,晶粒尺寸减小。此外,在XRD测试结果中并没有发现La2O3的物相结构,这表明La3+掺入Y2O3薄膜后并没有替换晶格中Y3+位置,只少量是固溶在Y2O3晶体晶界位置,这与XPS的分析结果一致。图4为La掺杂功率为40 W、50 W、60 W和80 W的样品截面SEM图像,图中均可以观察到柱状晶结构。

      Figure 3.  GIXRD spectra of La doped Y2O3 thin films with different powers

      Figure 4.  SEM images of La doped Y2O3 films with different powers. (a) 40 W; (b) 50 W; (c) 60 W; (d) 80 W

      随着La功率的增加,Y2O3薄膜表面越光滑,晶粒越细,如图5所示。样品(a)~(d)的粗糙度(RMS)分别为5.840 nm、5.073 nm、5.183 nm和3.532 nm。La掺杂功率为80 W的粗糙度最低。图6为不同功率La掺杂Y2O3薄膜的表面形貌图。从图中可以看出,La掺杂Y2O3薄膜晶粒大小均匀,生长完整,同时晶粒紧密连接在一起,表面起伏较小。这主要是由于La和Er元素的原子半径相差较大,阻碍了La原子进入Y2O3晶格,因此,掺杂La会阻碍Y2O3薄膜的生长,掺杂的La可能以金属氧化物的形式分散在Y2O3膜中。

      Figure 5.  AFM images of La doped Y2O3 films with different powers. (a) 40 W; (b) 50 W; (c) 60 W; (d) 80 W

      Figure 6.  SEM images of La doped Y2O3 films with different powers. (a) 50 W; (b) 80 W

    • 在金刚石衬底的单面上沉积增透膜,利用增透理论计算出增透膜所需厚度。图7(a)为不同功率La掺杂Y2O3薄膜的折射率随波长的变化曲线图。随着La掺杂功率的增加,制备的Y2O3薄膜在543.5 nm处折射率分别为1.91、1.96、1.93、1.97和1.97。随着La掺杂功率增加,La-Y2O3薄膜折射率高于未掺杂Y2O3薄膜,这是由于La3+占据Y2O3晶格的间隙位置,晶格参数略有增加,薄膜的密度随La掺杂功率的增加而增大。因此随着La掺杂功率的增加,折射率增大。La掺杂功率为50 W时折射率降低是由于La3+占据晶格的间隙位置,使得晶格间距d增大,薄膜密度降低,折射率随之下降。图7(b)为8~12 μm长波红外范围内Y2O3薄膜的透过率。在8~12 μm的长波红外范围内,未掺杂的Y2O3薄膜的最大透过率由金刚石的67%提高到81%。La掺杂后的Y2O3薄膜透过率变化规律与折射率一致,这主要是由于La掺杂Y2O3后薄膜晶粒得到细化,晶界数量随薄膜致密度增大而增加,折射率也随之增大。La掺杂功率为50 W时在长波红外范围内Y2O3薄膜最大透过率为80.3%。

      Figure 7.  The refractive index of La doped Y2O3 films with different powers; (b) The infrared transmission spectra of La doped Y2O3 films with different powers

      图8为La掺杂Y2O3和未掺杂Y2O3薄膜的力学性能。图8(a)显示样品硬度随La掺杂量变化的柱状图,随着La掺杂量的增加,薄膜硬度由未掺杂(12.02±0.37) GPa增加到最大为(14.14±0.39) GPa,与未掺杂Y2O3薄膜试样相比硬度增加了(2.37±0.02) GPa。La掺杂功率为80 W的样品弹性模量为(198±7.5) GPa,相比未掺杂试样增加了11 GPa,如图8(b)所示。

      Figure 8.  Mechanical properties of La doped Y2O3 films with different powers. (a) Hardness; (b) Elastic modulus

    • 随着La掺杂含量的增加,La-O键的结合能降低。以金属化合物的形式存在于Y2O3柱状结构中,阻碍了Y2O3薄膜晶粒的生长。因此,与未掺杂的Y2O3薄膜相比, La掺杂的Y2O3薄膜具有更低的粗糙度(RMS)值和更细的晶粒尺寸。随着La溅射功率的增加,C-Y2O3 (222)的衍射峰增强,出现新的立方相C-Y2O3(321)和新的单斜相B-Y2O3(111)。La掺杂对Y2O3薄膜中晶粒的生长起到抑制作用,使得Y2O3薄膜的晶粒细化,从而提高了Y2O3薄膜的力学性能。La掺杂功率为80 W的Y2O3薄膜的硬度和弹性模量最高,分别为(14.14±0.39) GPa和(198±7.5) GPa。掺La的Y2O3/金刚石薄膜在8~12 μm的长波红外范围内的最大透过率均保持在75%以上,与未镀膜金刚石相比,透过率提高11.9%。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return