Volume 44 Issue 8
Sep.  2015
Turn off MathJax
Article Contents

Wu Dongjiang, Zhou Siyu, Yao Longyuan, Ma Guangyi, Zhuang Juan. Simulation of micro-groove cross-section in femtosecond laser ablation of quartz glass[J]. Infrared and Laser Engineering, 2015, 44(8): 2243-2249.
Citation: Wu Dongjiang, Zhou Siyu, Yao Longyuan, Ma Guangyi, Zhuang Juan. Simulation of micro-groove cross-section in femtosecond laser ablation of quartz glass[J]. Infrared and Laser Engineering, 2015, 44(8): 2243-2249.

Simulation of micro-groove cross-section in femtosecond laser ablation of quartz glass

  • Received Date: 2014-12-07
  • Rev Recd Date: 2015-01-10
  • Publish Date: 2015-08-25
  • The cross-section shape simulation model of micro-groove in femtosecond laser ablation of quartz glass was built based on the ablation rate model of transparent dielectric. Besides, the model was verified by ablation experiment. The effect of pulse energy and scan speed on the cross-section shape of micro-groove was analyzed to achieve the adjustment method of micro-groove shape. The analysis of simulation results shows that the depth and sidewall angle of micro-groove can be improved by decreasing the spot radius, increasing the pulse energy or slowing the scan speed. The width of micro-groove be improved by increasing the pulse energy or slowing the scan speed, but with the increasing of spot radius, it first increases and then decreases. The width of micro-groove reaches a maximum of 8.13 m at the spot radius of 13 m with the pulse of 4 J and the scan speed of 0.2 mm/s.
  • [1] Von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Appl Surf Sci, 1997, 109: 1-10.
    [2]
    [3]
    [4] Chen Xiangqian, Peng Yan, Fang Dan, et al. Micro-structure silicon fabricated by femtosecond laser pulse for infrared sensor[J]. Infrared and LaserEngineering, 2014, 43(2): 398-403. (in Chinese)陈向前, 彭滟, 方丹, 等. 真空环境下飞秒激光制备的微构造硅的吸收和退火特性[J]. 红外与激光工程, 2014, 43(2): 398-403.
    [5] Tian Xiuqin, Xiao Si, Tao Shaohua, et al. Damage threshold research of monocrystalline silicon solar cells under femtosecond laser illumination[J]. Infrared and Laser Engineering, 2014, 43(3): 676-680. (in Chinese)田秀芹, 肖思, 陶少华, 等. 飞秒超短脉冲激光对硅太阳能电池的损伤阈值研究[J]. 红外与激光工程, 2014, 43(3): 676-680.
    [6]
    [7]
    [8] Marshall C D, Speth J A, Payne S A. Induced optical absorption in gamma, neutron and ultraviolet irradiated fused quartz and silica[J]. J Non-Crystalline Solids, 1997, 212(1): 59-73.
    [9]
    [10] Paterson C, Holmes A S, Smith R W. Excimer laser ablation of microstructures: a numerical model[J]. J Appl Phys, 1999, 86(11): 6538-6546.
    [11] Jiang L, Tsai H L. Prediction of crater shape in femtosecond laser ablation of dielectrics[J]. Journal of Physics D: Applied Physics, 2004, 37(10): 1492.
    [12]
    [13] Ma Fajun, Tian Youwei, He Feng, et al. Ultra-short pulse laser-induced damage in transparent materials[J]. Laser Technology, 2005, 29(5): 507-510. (in Chinese)马法君, 田友伟, 何峰, 等. 超短脉冲激光对透明材料的破坏[J]. 激光技术, 2005, 29(5): 507-510.
    [14]
    [15] Wang Wenjun. Study of shape and morphology control in femtosecond laser fabrication of metals[D]. Xi'an: Xi'an Jiaotong University, 2008. (in Chinese)王文君. 飞秒激光金属加工中的形状及形貌控制研究[D]. 西安: 西安交通大学, 2008.
    [16]
    [17]
    [18] Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl Phys Lett, 1994, 64(23): 3071-3073.
    [19] Joglekar A P, Liu H, Spooner G J, et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining[J]. Applied Physics B, 2003, 77(1): 25-30.
    [20]
    [21]
    [22] Ashkenasi D, Lorenz M, Stoian R, et al. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation[J]. Appl Surf Sci, 1999, 150(1-4): 101-106.
    [23]
    [24] Lenzner M, Krger J, Kautek W, et al. Precision laser ablation of dielectrics in the 10-fs regime[J]. Appl Phys A, 1999, 68(3): 369-371.
    [25] Wu A Q, Chowdhury I H, Xu X F. Femtosecond laser absorption in fused silica: Numerical and experimental investigation[J]. Phy Rev B, 2005, 72: 085128.
    [26]
    [27]
    [28] Niso F Di, Gaudiuso C, Sibillano T, et al. Influence of the repetition rate and pulse duration on the incubation effect in multiple-shots ultrafast laser ablation of steel[J]. Physics Procedia, 2013, 41: 691-700.
    [29]
    [30] Fan H C, Sun J, Longtin J P. Plasma absorption of femtosecond laser pulses in dielectrics[J]. Transaction-American Society of Mechanical Engineers Journal of Heat Transfer, 2002, 124(2): 275-283.
    [31] Jiang L, Tsai H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics, 2006, 100(2): 023116-023116-7.
    [32]
    [33] Yang Chengjuan, Mei Xuesong, Wang Wenjun, et al. Femtosecond laser ablation on gold-chromium film[J]. Infrared and Laser Engineering, 2011, 40(1): 61-65. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(903) PDF downloads(1194) Cited by()

Related
Proportional views

Simulation of micro-groove cross-section in femtosecond laser ablation of quartz glass

  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116024,China;
  • 2. School of Physics and Optoelectronic Engineering,Dalian University of Technology,Dalian 116024,China

Abstract: The cross-section shape simulation model of micro-groove in femtosecond laser ablation of quartz glass was built based on the ablation rate model of transparent dielectric. Besides, the model was verified by ablation experiment. The effect of pulse energy and scan speed on the cross-section shape of micro-groove was analyzed to achieve the adjustment method of micro-groove shape. The analysis of simulation results shows that the depth and sidewall angle of micro-groove can be improved by decreasing the spot radius, increasing the pulse energy or slowing the scan speed. The width of micro-groove be improved by increasing the pulse energy or slowing the scan speed, but with the increasing of spot radius, it first increases and then decreases. The width of micro-groove reaches a maximum of 8.13 m at the spot radius of 13 m with the pulse of 4 J and the scan speed of 0.2 mm/s.

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return