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Abstract: A novel octagonal photonic crystal fiber (PCF) was designed using an elliptical air hole and
large circular air hole in the core region in order to enhance the performance of modal nonlinearity,
birefringence and to get the low confinement loss at the same time. Its effective mode area, nonlinearity,
birefringence and confinement loss were investigated simultaneously by using finite element method(FEM)
with anisotropic perfectly matched layers. The numerical simulation results show that by choosing suitable
relative structure parameters that the proposed fiber has high birefringence up to the order of 1.68×10-2 at
wavelength 1.55 μm, it is about two orders of magnitude higher than that of the regular polarization
maintaining fiber. High nonlinearity γ=60 W-1km -1, and low confinement loss 0.6 dB/km at wavelength
1.55 μm. This highly birefringence PCFs with high nonlinear coefficient have received growing attention
in telecommunication, various polarization sensitive devices and supercontinuum applications systems.
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高双折射高非线性低损耗八边形光子晶体光纤特性

马依拉木·木斯得克, 姚建铨, 陆 颖, 吴宝群, 郝丛静, 段亮成

(1. 天津大学精仪学院 天津大学激光与光电子研究所，天津 300072；
2. 光电信息技术科学教育部重点实验室，天津 300072)

摘 要：为了同时实现高双折射高非线性并得到低损耗，设计一种在光纤纤芯附近引入椭圆形空气孔和圆
形空气孔组成的新型优化的八边形光子晶体光纤。 采用全矢量有限元法结合各向异性完美匹配层，对该光
纤的有效面积、非线性、双折射和损耗特性进行了模拟分析。数值模拟结果表明，通过选择适当的结构参数，
在波长 1.55 μm处，该光纤具有高双折射高达 B=1.68×10-2，比普通光纤高两个数量级，高非线性系数为 γ=
60 W-1km-1和低损为 0.6 dB/km。 这种具有高双折射高非线性系数的光纤可用于光通信、偏振敏感的各种设
备和产生超连续普等领域。
关键词： 光子晶体光纤； 高双折射； 高非线性； 低损耗； 有限元法
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0 Introduction

Photonic c rystal fiber (PCFs) have attracted
much attention due to their unique properties such
as endlessly single -mode operation, chromatic
dispersion management, large mode areas (LMA),
high birefringence, high nonlinearity and low
confinement loss [1-5] which are not obtainable using
conventional step index fibers. In recent years,
growing interest has been shown in reducing the
polarization coupling which is possible with
birefringent PCFs. Birefringence PCFs can be
realized by making the core of the PCF
asymmetric. Hence, the effective index difference
between the two orthogonal polarization modes
increases. PCFs with six-fold rotational symmetry
have zero birefringence [6 -7]. However by altering
their hole size [8] or distorting the shape of their
hole (elliptical air holes) [9] around the PCF core,
six -fold rotational symmetry of the PCF is
destroyed. Previously proposed PCF with elliptical
air holes[10] has demonstrated that large birefringence
in the order of 10 -3 -10 -2 can be achieved.
Nevertheless, highly nonlinear coefficient PCFs
with high birefringent have received growing
attention in telecommunication and supercontinuum
applications [8,11-14]. On the other hand, PCFs based SC
light sources at 1.55 μm band have become an
alternative to narrow band sources used in
telecommunication window such as a spectral
slicing optical pulse source used in wave length
division multiplexing.

Previously, several designs for the PCFs have
been proposed to achieve a high birefringence and
highly nonlinear coefficient in a PCF at wavelength
1.55μm. PCF designs are those that have modified
hexagonal PCFs[8,15-20], square PCFs[21-23], and octagonal
PCFs [24-26]. This kind of design has not better high
nonlinear coefficient and high birefringence
compared with our design PCF.

In our study, we propose a PCF design that
simultaneously exhibits much better performance
in terms of birefringence and nonlinearity than any
previously published results. Additionally, the
proposed PCF has shown some interesting results
in terms of low confinement loss. In order to fully
investigate the key propagation characteristics of
our proposed design, finite element method (FEM)
has been employed. As a part of the ongoing
efforts to design HB -HN -OPCF with low
confinement loss, a novel five -ring OPCFs
structure is proposed for the telecommunication
window. Numerical simulation results show that
the HB -HN -OPCF have B =1.68 ×10 -2, nonlinear
coefficients greater than γ =60 W -1km -1, at 1.55
μm, and confinement loss lower than 0.6 dB/km in
the same wavelength. Due to the above mentioned
properties, the proposed OPCFs in this letter have
many optical applications in future.

１ Structure of the OPCF and simulation
method

The mot ivation of this study is to design
OPCF structures that achieve high nonlinear
coefficient, high birefringence and low losses
simultaneously. Fig.1 illustrates the schematic
section of the OPCF. It is the proposed structure
made of regular circular and ellipse air-holes with
an index-guiding core surrounded by an isosceles
triangular unit lattice of a vertex angle of 45° [27],
where the core is formed by omission of one air
hole and the cladding is formed by five air hole
rings, and background material such as silica glass
(n =1.45). The hole pitch length (the center to
center spacing between the air holes) is 撰, the
circular air -hole diameter on the first ring is d1,
while the air -hole diameter on the other rings is
d2, elliptical air-holes with elliptical ratio 浊1=a1/b1

arranged along x-axis and elliptical ratio 浊2=a2/b2

arranged along y-axis near the core region of the
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proposed design.

Fig.1 Cross-section of the HB-HN-OPCF

To analyze optic al properties, we use the
widely accepted numerical analysis method, finite
element method, which provides a well -proven
reliability. Using the FEM, the PCF cross-section,
with the finite number of air holes is divided into
homogeneous subspaces where Maxwell′ s
equations are solved by accounting for the
adjacent subspaces. These subspaces are triangles
that allow a good approximation of the circular
structures. Using the anisotropic PML, from
Maxwell′ s curl equations the following vectorial
equation is obtained [28-29]:

驻

×(滋r

-1 驻

×E)-k
2

0 εrE=0 (1)

Where E is the electric field vector, k0 (=2仔/姿) is
the wave-number in the vacuum, εr and 滋r is the
relative permittivity and relative permeability,
respectively.

The nonlinearity coefficient γ (姿) of the PCF
can be defined as[30]

γ(姿)= n2棕0

cAeff
=仔姿

n2

Aeff
(2)

Where 姿 is the wavelength, n2 is the fiber nonlinear

refractive index, and A eff is the effective mode

area, which is calculated by[30]

Aeff =
(蓦s E

2
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2
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4
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The polarization beat length LB is a measure
of the birefringence and is defined as[4]

LB= 2仔
茁x -茁y

＝ 姿
nx -ny

(4)

Where 茁 x and 茁 y are the propagatio n constants of

the two modes n x and ny and are the refractive

index that each mode sees, with shorter LB

corresponding to stronger birefringence. So the
birefringence is expressed as[4]

B= neffx -neffy (5)

In PCFs, the light is tr apped by an enclosure
of air holes and loss arises from small amounts of
power leakage between and through the holes. This
is termed confinement loss, which is defined by[5]

Lc= 40仔
ln(10)姿 Im[neff ]＝8.686k0Im[neff ] (6)

Where Im[neff ] is the imaginary part of the neff .

2 Simulation results and discussion

Numerical result s of the effective mode area
depicted in Fig.2 under the different structures of
the proposed OPCF. As may be seen from the
figure, effective mode area of the fundamental
mode shows different behavior for different
structures. The results shown that, the effective
mode area of the optical fiber basically appears
the linear trend with the increasing of wavelength.
When the air-filling fraction d1/Λ=d2/Λ=0.65, Λ=
1 滋m, η1=2 are constant, while changing η2 ranging
from 2 to 2.4. It can be seen from Fig.2(a) that the
Aeff reduces 姿<1.35 滋m with η2 increasing, and 姿>
1.35滋m increasing with η2 increasing. At wavelength
1.55 滋m is 2.52 滋m2. In addition, in Fig.2(b) shows
the effective mode area of the proposed OPCF
steadily decreases when the air-filling fraction d1/Λ=
0.65, Λ=1 滋m, η1=2 and η2=2.4 are constant, while
the air-hole diameter d2 ranging from 0.65 to 0.85
with the entire wavelength range. At the same time
we can see that the Aeff at wavelength 1.55 滋m
reaches 2.16 滋m2. From the result we can know, d2

effective more about the Aeff than the η2.

Mayilamu·Musideke et al: High birefringence and
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Fig.2 Nonlinear coefficient versus wavelength of the

structure for changes η2 and d2

Then, co nsidering the influence of different
parameters on the nonlinearity coefficient are
simulated and shown in Fig.3, by remaining the
air filling fraction d1/Λ=d2/Λ=0.65, Λ=1 μm, η1=
2, while changing η2 from 2 to 2.4. It can be
shown in Fig.3 (a) that the nonlinear coefficient
is decreased with the increase of wavelength, and
nonlinear coefficient is a gently dipping trend
when η2 is increased. While at wavelength 1.55 μm
we obtained smaller nonlinear coefficient γ =
51.3 W-1km -1. Fig.3 (b) shows that when the air
filling fraction d1/Λ =0.65, η1 =2 and η2 =2.4 are
constant, and d2 changing from 0.65 to 0.85. The
nonlinear coefficient curves are almost parallel to
each other. When d2 is enlarged, the curve of
nonlinear coefficient is up-shift and the value of
nonlinear coefficient is increased. Adjusted the
air -hole diameter d2 to 0.85, we obtained at
wavelength 1.55 μm a larger nonlinear coefficient
γ=60 W-1km-1. From the result it can be seen that
in order to get a large nonlinear coefficient the d2

play an important role than η2.

Fig.3 Nonlinear coefficient against wavelength of the structure

for changes η2 and d2

Fig.4 illustrates the birefringence and beat length
of the OPCF for d1/Λ =d2/Λ =0.65, Λ =1μm, η1 =2
and η2 ranging from 2 to 2.4. It can be seen from
Fig.4(a) that the modulus of the birefringence sharply
increases with the increases of wavelength and the

Fig.4 Birefringence and beat length of the structure

for changes η2
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elliptical ratio η2. These parameters give a value
of birefringence 1.06×10 -2 at 1.55 μm that is two
orders of magnitude higher. In this case the
corresponding beat length is 145.5 μm, it is shown
in Fig.4 (b). We further study the influence of
the air -hole diameter d2 in the first cladding on
the birefringence. Fig.5 (a) shows, when d1/Λ=0.65,
Λ=1μm, η1=2, η2=2.4 and d2 ranging from 0.65 to
0.85. We can see that the birefringence increases
with the increases wavelength and the different air
filling fractions d2/Λ. These parameters give a value
of birefringence 1.68×10-2 at 1.55μm is two orders of
magnitude higher than that of conventional
polarization maintaining fibers and where when
d2 =0.85, λ >1.5 μm, the birefringence instead
reduces. It is because the light gradually spread
by increased wavelength. In this case the
corresponding beat length is 91.85 μm, it is shown
in Fig.5 (b). Compared to these two parameters, the
simulation results show that the diameter of the
air holes d2 plays an important role in the
birefringence of PCFs.

Then we calculate easily the confinement loss

by Eq. (6) for the optimized HB-HN-OPCF, when
the pitch Λ=1μm, elliptical ratio η1=2, η2=2.4 and
air filling ratio are d1/Λ =0.65 and d2/Λ =0.85 are
kept constant . The simulation results are shown
in Fig.6. From the Fig.6 (a) we can clearly see, the
model confinement loss Lc increases with the
increases wavelength, and the confinement loss is
less than 10 -7 dB/km in the wavelength range of
1.2 μm to 1.6 μm. It is found that a very low Lc of
the proposed OPCF of 0.6 dB/km at wavelength
1.55 μm was obtained. The 2D mode field intensity
distribution of the fundamental mode for the
OPCFs at wavelength 1.55 μm is shown in Fig.6(b).
It can be clearly seen the mode field intensity are
more strongly confined in the core region and the
shape is ellipse that important to get the high
birefringence.

Fig.6 Confinement loss and intensity profile at wavelength

1.55 μm of the optimized OPCF

Table1 shows a de tailed comparison between
properties of the proposed HPCF, SPCF and OPCF,
considering the nonlinear coefficient 酌 value
variation and birefringence B of our PCF. The
nonlinear coefficients in all reference are not
larger enough and it is not match to the high

Fig.5 Birefringence and beat length of the structure

for the changes d2

Mayilamu·Musideke et al: High birefringence and
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nonlinearity requirements of optical fiber
communication. It should be pointed out that the
birefringence is not considered in reference [16-18,
20]. Although, the PCFs in reference[8, 15, 21-25]
show, the birefringence is reached to 10 -3 and
higher one order of magnitude than common
optical fibers, but it still can not satisfy the need
of optical fiber communication and sensing system
for better optical fibers with better features, such
as high polarization. On the other hand, our
proposed PCFs have shown better high nonlinear
coefficient and high birefringence at wavelength
1.55 滋m compared with PCF in Tab.1.

Tab.1 Comparison of nonlinear coefficient

and birefringence from different

reference at 姿=1.55滋m

3 Conclusion

W e propo sed a simple index -guiding OPCF
structure in which the elliptical air -holes with
elliptical ratio η1=a1/b1 arranged along x-axis and
elliptical ratio η2 =a2/b2 arranged along y -axis are
introduced near the core region. The influence of
elliptical ratio η2 and circular air -hole d2 on the
modal nonlinearity, birefringence and confinement

loss are numerically investigated by using finite
element method with anisotropic perfectly matched
layers. The results are summarized at wavelength
1.55 滋m that our proposal shows low confinement
loss Lc =0.6 ×10 -7 dB/km, a small effective mode
area Aeff=2.16 滋m2, high nonlinearity γ=60 W-1km-1

as well as high birefringence B=1.68×10-2, and the
birefringence is two orders of magnitude higher
than that of conventional polarization maintaining
fibers. It has also been found that the parameters
η2 and d2 is particularly important in controlling
the nonlinearity, birefringence and conffinement
loss properties of the OPCF. Compared to the
previous study the results of our proposed it is
better. This highly birefringence PCFs with high
nonlinear coefficient can be used in
telecommunication, various polarization sensitive
devic es and supercontinuum applications systems.
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