双波段比色精确测温技术

李云红,马 蓉,张 恒,曹 浏,霍 可,赵 强

(西安工程大学 电子信息学院,陕西 西安 710048)

摘 要:非接触红外辐射测温具有响应速度快、准确、便捷等优势。为实现中低温(50~400℃)物体温度的精确测量,根据双波段比色测温原理,搭建了双波段比色测温试验系统。首先对试验系统所用的试验器件进行精确标定,得到拟合曲线,用多种插值算法对曲线进行校正。然后,用设定温度的面源 黑体作为试验目标来进行试验温度数据采集。实验结果表明:搭建的双波段试验系统不需要知道目标 发射率,也能较为精确地得到中低温物体的真实温度。当系统标定置信度为 0.95 时,物体的标准偏差 在 3℃以内。验证了搭建测温系统的正确性,实验装置的搭建对中低温物体真实温度的精确测量具有 重要的研究意义。

关键词:双波段; 比色测温; 精确测温; 黑体 中图分类号:TN219 文献标志码:A 文章编号:1007-2276(2015)01-0027-09

Dual waveband colori-metric temperature accurate measurement technology

Li Yunhong, Ma Rong, Zhang Heng, Cao Liu, Huo Ke, Zhao Qiang

(School of Electronics & Information, Xi'an Polytechnic University, Xi'an 710048, China)

Abstract: Non-contact infared radiation temperature measurement has the advantages such as fast response speed, accurate and convenient. In order to realize accurate measurement of the temperature of low-middle temperature objects (50 - 400 $^{\circ}$ C), a system of dual waveband colori-metric temperature measurement based on the theory of dual waveband colori-metric temperature measurement was established. Firstly, the devices need to be calibrated accurately to fit curve which needs a variety of interpolation algorithm for correction. Then, the blackbody with given temperature's was measured as a reference. Experimental results indicate that the system of dual waveband colori-metric temperature measurement can precisely obtain the true temperature of low-middle temperature objects without the presence of target launch rate. The standard deviation of the object is within 3 $^{\circ}$ C when the calibrated confidence is 0.95, which proves the validity of this experiment system. The construction of the experimental device for accurate measurement of low temperature object in the real temperature has important research significance.

收稿日期:2014-05-03; 修订日期:2014-06-07

基金项目:西安市科技局技术转移促进工程(CXY1431(4));国家级大学生创新创业训练计划(201310709004,201410709024); 西安工程大学大学生创新创业训练计划(201403018);陕西省教育厅科研计划(14JK1319); 陕西省科技厅自然科学基础研究计划(2013JC2-15)

作者简介:李云红(1974-),女,副教授,硕士生导师,博士,主要从事红外热像测温技术、图像处理、信号与信息处理技术研究。 Email:hitliyunhong@163.com

Key words: dual waveband; colorimetry temperature measurement; accurate measuring temperature; blackbody

0 引 言

科研领域的温度测量最重要的是实验数据的准 确性,包括测点温度信息的准确性和测点几何位置 信息的准确性。非接触式红外辐射测温具有响应速 度快、准确、便捷等优势,在冶金、电力、建筑、森林防 火等行业得到了广泛应用,已成为事故预防、产品质 量控制和经济效益提高的重要手段印。现有的非接触 辐射测温方法主要有红外热像仪测温和比色测温两 种。红外热像仪测温存在的主要问题,一是高温测量 即测温上限的扩展问题;二是发射率影响的问题;三 是大气透过率对精确测温的影响[2-4]。现有的比色测 温法又仅适合于高温测量。邓兴凯⑤等对光谱辐射 测温技术进行了归纳总结,介绍了前人研究的测量 技术以及辐射测温发展现状。刘纯红¹⁶¹分析了滤光 片的带宽对比色测温精度的影响,改进了比色测温 算法,在一定意义上提高了比色测温的精度。李进军[7] 深入研究了彩色 CCD 比色测温的灰度值融合处理 方法。阴万宏等18通过建立的实验装置研究了带通 红外比色滤波测温技术,理论上可行,但测温结果 有±7℃的温度偏差。吴海滨等^[9]指出在比色测温中, 比色双波长组合选择的可行性。以上分析在某种程 度上对于中高温的测量都具有一定的参考价值。

文中在前人研究的基础上¹⁰⁻¹³,为了提高测温精度, 提出了双波段比色精确测温的方法,搭建了双波段比 色测温试验系统,消除了目标发射率对绝对温度测量 的影响,准确给出被测目标的温度。搭建的测温系统能 精确测量中、高温目标辐射源的温度,且该类设备结构 简单、便携、造价低,可以实现大面积推广使用。

1 双波段比色测温原理

双波段比色测温法基于比色测温理论,将比色 测温系统中滤波片的窄波带范围放宽进行积分而获 得实验结果。比色测温法是通过测量两个波长范围 辐射量比值来求取目标辐射源真实温度的方法,可 大大减少由于发射率估计不准确带来的温度误差。 探测器在波长处接收到的辐射功率 **P**_λ为:

$$\mathbf{P}_{\lambda} = \int_{\Delta\lambda} \mathbf{R}_{\lambda} \tau_{\lambda C} \tau_{\lambda I} \varepsilon_{\lambda} \frac{\mathbf{c}_{1}}{\lambda^{5}} \frac{1}{e^{\frac{\mathbf{c}_{2}}{\lambda T}} - 1} \mathbf{A} d\lambda$$
(1)

式中: \mathbf{R}_{λ} 为探测器光谱响应度; $\tau_{\lambda c}$ 为前置光学系统 透过率; $\tau_{\lambda f}$ 为带通滤光片透过率;A 为探测器接收到 的辐射源面积。在特定温度 T下,积分波段[λ_1, λ_2]内 探测器接收到的辐射功率 \mathbf{P}_1 为:

$$\mathbf{P}_{1} = \int_{\lambda_{1}}^{\lambda_{2}} \mathbf{R}_{\lambda} \tau_{\lambda C1} \tau_{\lambda f1} \varepsilon_{\lambda} \frac{\mathbf{c}_{1}}{\lambda^{5}} \frac{1}{e^{c_{2}/\lambda T}} \mathbf{A} d\lambda \qquad (2)$$

同理,积分波段[λ_3 , λ_4]内探测器接收到的辐射 功率 P_2 为:

$$\mathbf{P}_{2} = \int_{\lambda_{3}}^{\lambda_{4}} \mathbf{R}_{\lambda}' \tau_{\lambda C2} \tau_{\lambda f2} \varepsilon_{\lambda} \frac{\mathbf{C}_{1}}{\lambda^{5}} \frac{1}{e^{\frac{c_{2}}{\lambda} \lambda^{T}}} - \mathbf{A} d\lambda$$
(3)

若假定两个带宽内目标源的发射率不发生变 化,且探测器接收到的辐射源面积不发生变化,则探 测器在两个不同带宽内接收到的辐射功率 P₁ 和 P₂ 的比值为:

$$\frac{\mathbf{P}_{1}}{\mathbf{P}_{2}} = \frac{\int_{\lambda_{1}}^{\lambda_{2}} \mathbf{R}_{\lambda} \tau_{\lambda C1} \tau_{\lambda f1} \frac{\mathbf{c}_{1}}{\lambda^{5}} \frac{1}{e^{\frac{\mathbf{c}_{2}}{2}\lambda T} - 1} d\lambda}{\int_{\lambda_{3}}^{\lambda_{4}} \mathbf{R}_{\lambda}' \tau_{\lambda C2} \tau_{\lambda f2} \frac{\mathbf{c}_{1}}{\lambda^{5}} \frac{1}{e^{\frac{\mathbf{c}_{2}}{2}\lambda T} - 1} \mathbf{A} d\lambda}$$
(4)

由公式(4)可看出,只要准确测出不同滤光片下探测器接收到的目标源辐射功率 P_1 和 P_2 ,透镜及各滤光片的光谱透过曲线函数为 τ_{AC1} 、 τ_{AC2} 、 τ_{AT} 和 τ_{AZ} ,测量并拟合出探测器在不同波段(滤光片透过光谱)下的光谱响应度 R_A 和 R_A' ,求解公式(4)即可准确得到一组滤光片下目标辐射源的温度 T_o

2 宽波段比色测温系统及标定

2.1 测温系统构成

宽波段比色测温系统设计框图如图 1 所示,光 学通路中的斩波器起开关的作用,它可以大大减少 噪声,提高信噪比。而其滤光片则是比色测温的重 点,通过更换滤波片就能在理论上实现宽波段非接触 精确测温,实验选用中心波长为8 645 nm、10 700 nm、 和 14 100 nm 的三个滤光片,滤光片的透过率经过国 防科技工业光学一级计量站采用红外光谱光度标准 装置精确测量。搭建的实验平台选用的探测器为液 氮制冷型碲镉汞探测器,其相对光谱响应率数据来

Fig.1 Block diagram of dual waveband colorimetric temperature measurement

其测温原理为:面源黑体辐射的光通过平行光管 后被红外聚焦透镜聚焦,聚焦光路上放置斩波器与不 同透过波长的滤光片,聚焦光斑位置正好落在碲镉汞 探测器的表面,探测器输出的响应信号经过放大电路 及信号处理电路后,将测量结果输出。对实验系统进 行校准时被测物选用美国 SBIR 公司的面源黑体,设 定每隔 10℃进行测量,计算出比值并代入公式(4),可 得到测试温度 T,经过数据处理使得测量数据与设定 数据得到更为精确的被测目标的温度。

2.2 滤光片透过率标定及数值拟合

滤光片透过率测量数据符合高斯分布规律,对 其进行高斯拟合,得到各个滤光片透过率点阵和拟 合曲线,如图2所示。

对滤光片进行匹配拟合时,选取置信因子为 0.95。图 2(a)、(b)、(c)拟合函数及参数如下:

 $au_{A1}(8645) = \mathbf{a}_1 \cdot e^{-(\frac{\mathbf{x}-\mathbf{b}_1}{c_1})^2} + \mathbf{a}_2 \cdot e^{-(\frac{\mathbf{x}-\mathbf{b}_2}{c_2})^2} + \mathbf{a}_3 \cdot e^{-(\frac{\mathbf{x}-\mathbf{b}_3}{c_3})^2} + \mathbf{a}_4 \cdot e^{-(\frac{\mathbf{x}-\mathbf{b}_4}{c_4})^2}$ (5) 其中, 拟合参数为: $\mathbf{a}_1 = 69.8$, $\mathbf{b}_1 = 1$ 178, $\mathbf{c}_1 = 19.66$, $\mathbf{a}_2 = 4.276$, $\mathbf{b}_2 = 1$ 169, $\mathbf{c}_2 = 41$, $\mathbf{a}_3 = 72.61$, $\mathbf{b}_3 = 1$ 148, $\mathbf{c}_3 = 22.5$, $\mathbf{a}_4 = 43.62$, $\mathbf{b}_4 = 1$ 127, $\mathbf{c}_4 = 13.77$.

$$\tau_{\lambda f}(10\ 700) = \mathbf{a}_{1} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{1}}{\mathbf{c}_{1}}\right)^{2}} + \mathbf{a}_{2} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{2}}{\mathbf{c}_{2}}\right)^{2}} + \mathbf{a}_{3} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{3}}{\mathbf{c}_{3}}\right)^{2}} + \mathbf{a}_{4} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{4}}{\mathbf{c}_{4}}\right)^{2}} + \mathbf{a}_{5} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{5}}{\mathbf{c}_{5}}\right)^{2}} + \mathbf{a}_{6} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{6}}{\mathbf{c}_{6}}\right)^{2}}$$
(6)

其中, 拟合参数为: $a_1=2.545$, $b_1=945.1$, $c_1=4.842$, $a_2=-36.16$, $b_2=937.6$, $c_2=11.78$, $a_3=-578.9$, $b_3=926.7$, $c_3=7.065$, $a_4=47.88$, $b_4=958.6$, $c_4=13.6$, $a_5=548.2$, $b_5=$ 926.7, $c_5=6.947$, $a_6=124.9$, $b_6=931.1$, $c_6=21$ 。

$$\tau_{\lambda f}(14\ 100) = \mathbf{a}_{1} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{1}}{c_{1}}\right)^{2}} + \mathbf{a}_{2} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{2}}{c_{2}}\right)^{2}} + \mathbf{a}_{3} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{3}}{c_{3}}\right)^{2}} + \mathbf{a}_{4} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{4}}{c_{4}}\right)^{2}} + \mathbf{a}_{5} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{5}}{c_{5}}\right)^{2}} + \mathbf{a}_{6} \cdot e^{-\left(\frac{\mathbf{x} - \mathbf{b}_{6}}{c_{6}}\right)^{2}}$$
(7)

其中, 拟合参数为: a_1 =6.888, b_1 =714, c_1 =5.987, a_2 = 25.85, b_2 =717.5, c_2 =19.76, a_3 =19.45, b_3 =725, c_3 =10.86, a_4 =34.58, b_4 =700.5, c_4 =15.27, a_5 =7.82, b_5 =736.1, c_5 = 5.681。

2.3 探测器相对光谱响应率测量及标定

选用液氮制冷的碲镉汞探测器。探测器的相对光 谱响应率测量数据来源于英国国家物理实验室(NPL), 在滤光片带宽范围内对其测量数据分段标定得到拟合 曲线,如图 3 所示。拟合函数见公式(8)~(10)。

$$R_{\lambda}(8\ 645) = p_1 x^2 + p_2 x + p_3 \tag{8}$$

其中, 拟合参数为:p1=0.007 333,p2=-0.034 26,p3=

 $0.255\,2_{\,\circ}$

 $R_{\lambda}(10\ 700) = p_1 x^4 + p_2 x^3 + p_3 x^2 + p_4 x + p_5$ (9) 其中, 拟合参数为: $p_1 = -0.1212, p_2 = 5.025, p_3 = -77.97, p_4 = 536.8, p_5 = -1383$ 。

 $R_{\lambda}(14\ 100) = p_1 x^4 + p_2 x^3 + p_3 x^2 + p_4 x + p_5$ (10) 其中, 拟合参数为: $p_1 = -0.103\ 3$, $p_2 = 5.584$, $p_3 = -112.9$, $p_4 = 1011$, $p_5 = -3.382_{\odot}$

2.4 试验系统中聚焦透镜透过率标定

聚焦透镜透过率采用国防科技工业一级计量站 的光谱光标计进行标定,而且对三组滤光片透过波 段内的透过率均进行了标定,结果如表1所示。

表 1 聚焦透镜在滤光片透过波段内的透过率

Tab.1 Focusing lens in filter transmittance through the band

Optical filter (central wavelength)	8 645 nm	10 700 nm	14 100 nm
Focusing lens transmittance	0.96	0.98	0.69

3 实验结果及数据处理

面源黑体与探测器相距 75 cm,平行光管与探测 器相距 55 cm,聚焦透镜与探测器相距 6.5 cm。用搭 建的宽波段比色测温实验系统对 50~400 ℃范围内 的辐射源进行温度测量,用示波器读出辐射电压值。 所得实验结果如表 2 和表 3 所示。

通过表 2 和表 3 的数据发现,中心波长为8645 nm 的滤光片与中心波长为 10 700 nm 的滤光片比值在 理论和实验曲线趋势上比较一致,而其他两种实验比 值的曲线趋向存在较大的偏差,该情况说明以中心 波长为 8 645 nm 的滤光片与中心波长为 1 0700 nm 的滤光片测量温度时系统的稳定性能较其他组合要 好很多,进而使整个实验系统的实验误差大大减少, 测温精确度得到一定程度的保障。

将表 3 中三种比色测温组合实验温度和标准温 度以及温度误差结果以图形表现出来,如图 4 所示。

经过三组实验结果分析,选定中心波长为8645nm 和10700nm的滤光片组成实验系统,为了保证实验 结果的精确性和可重复性,进行了5次重复性实验, 结果如表4所示。这两组滤光片对测试结果的精确 度有明显优势,即这两组滤光片组成的实验系统性 能较好。造成这种情况存在的原因主要有以下几个 方面:

(1) 中心波长为 8 645 nm 的滤光片与中心波长 为 10 700 nm 的滤光片,面源黑体在二者透过率波段 内的光谱发射率较为接近,比值近于 1。

(2)由于实验条件限制,实验系统中光电信号处 理电路精度不高,使得辐射电压的读值不准,较小的 辐射电压变化会造成较大的辐射能量比值变化。

(3)选择的碲镉汞探测器最大响应波长为15 μm, 而中心波长为 14 100 nm 的滤光片透过率波长正好 位于探测器响应的边缘,因此,测量时探测器不能

31

表 2 双波段比色测温系统的实验结果

Tab.2 Experimental results of dual waveband colorimetric temperature measurement

T	Actual measurement voltage/mV		8 645 nm and	10 700 nm and	8 645 nm and	
Temperature/ C	(1) 8 645 nm	5 nm (2) 10 700 nm (3) 14 100 nm ^{10 70}		10 700 nm ratio	14 100 nm ratio	14 100 nm ratio
50	38	49	22	0.775 5	2.227 3	1.727 3
60	44	55	24	0.800 0	2.291 7	1.833 3
70	54	66	26	0.818 2	2.538 5	2.076 9
80	64	75	28	0.853 3	2.678 6	2.285 7
90	78	90	32	0.866 7	2.812 5	2.437 5
100	92	100	34	0.920 0	2.941 2	2.705 9
110	106	117	38	0.906 0	3.078 9	2.789 5
120	124	136	41	0.911 8	3.317 1	3.024 4
130	144	148	45	0.973 0	3.288 9	3.200 0
140	164	166	50	0.988 0	3.320 0	3.280 0
150	184	189	56	0.973 5	3.375 0	3.285 7
160	200	206	60	0.970 9	3.433 3	3.333 3
170	224	225	68	0.995 6	3.308 8	3.294 1
180	256	252	76	1.015 9	3.315 8	3.368 4
190	276	265	81	1.041 5	3.271 6	3.407 4
200	304	293	86	1.037 5	3.407 0	3.534 9
210	330	309	91	1.068 0	3.395 6	3.626 4
220	360	332	95	1.084 3	3.494 7	3.789 5
230	400	374	101	1.069 5	3.703 0	3.960 4
240	432	401	110	1.077 3	3.645 5	3.927 3
250	452	412	113	1.097 1	3.646 0	4.000 0
260	476	429	117	1.109 6	3.666 7	4.068 4
270	512	455	126	1.125 3	3.611 1	4.063 5
280	544	477	131	1.140 5	3.641 2	4.152 7
290	580	515	139	1.126 2	3.705 0	4.1727
300	612	534	147	1.146 1	3.6327	4.163 3
310	652	550	157	1.185 5	3.503 2	4.152 9
320	700	608	168	1.151 3	3.6190	4.166 7
330	752	622	178	1.209 0	3.494 4	4.224 7
340	808	669	190	1.207 8	3.521 1	4.252 6
350	860	716	199	1.201 1	3.5980	4.321 6
360	948	785	205	1.207 6	3.829 3	4.624 4
370	1028	855	212	1.202 3	4.033 0	4.8491
380	1098	898	225	1.222 7	3.991 1	4.8800
390	1163	925	235	1.257 3	3.936 2	4.948 9
400	1210	975	238	1.241 0	4.096 6	5.084 0

32

	表 3	面源黑体的实验温度
--	-----	-----------

Tab.5 Experiment temperatures of exterior blackboc	Tab.3 Ex	periment	temperatures	of	extend	blackbod
--	----------	----------	--------------	----	--------	----------

Setting temperature/ $^{\circ}$	(1) Experimental temperature of 8 645 nm and 1 0700 nm/℃	(2) Experimental temperature of 1 0700 nm and 14 100 nm/℃	(3) Experimental temperature of 8 645 nm and 14 100 nm/°C	Experimental and real difference in temperature of (1)	Experimental and real difference in temperature of (2) /°C	Experimental and real difference in temperature of (3) /°C
50	47.475 0	60.894 5	45.579 1	-2.5250	10.894 5	-4.420 9
60	56.017 3	68.662 0	63.838 8	-3.982 7	8.6620	3.838 8
70	70.583 1	76.183 5	70.689 6	0.583 1	6.1835	0.6896
80	85.421 3	75.000 6	74.036 9	5.421 3	-4.999 4	-5.963 1
90	92.475 3	85.400 1	96.638 6	2.475 3	-4.599 9	6.638 6
100	95.968 7	94.948 1	93.012 1	-4.031 3	-5.0519	-6.987 9
110	106.531 9	117.316 1	106.881 3	-3.468 1	7.316 1	-3.1187
120	124.018 4	129.642 0	115.747 5	4.018 4	9.6420	-4.252 5
130	136.7327	137.027 5	131.617 4	6.732 7	7.027 5	1.617 4
140	141.130 2	138.087 5	132.830 0	1.130 2	-1.912 5	-7.1700
150	145.097 4	156.785 2	149.106 3	-4.902 6	6.785 2	-0.893 7
160	165.768 2	155.658 7	153.096 9	5.768 2	-4.341 3	-6.903 1
170	168.071 4	167.937 8	163.245 7	-1.928 6	-2.0622	-6.754 3
180	177.4396	184.409 3	186.688 6	-2.560 4	4.409 3	6.688 6
190	194.129 3	189.014 6	186.831 4	4.1293	-0.985 4	-3.168 6
200	195.155 0	207.156 0	203.070 7	- 4.845 0	7.1560	3.070 7
210	205.043 7	218.365 8	220.288 5	-4.956 3	8.365 8	10.288 5
220	223.0187	224.081 8	219.649 7	3.018 7	4.081 8	-0.350 3
230	232.052 0	236.952 9	234.895 0	2.052 0	6.952 9	4.895 0
240	240.891 7	238.692 4	246.1620	0.891 7	-1.307 6	6.1620
250	253.945 6	254.798 0	249.6528	3.945 6	4.7980	-0.347 2
260	263.608 8	269.035 8	264.1100	3.608 8	9.035 8	4.1100
270	274.7207	278.225 5	263.195 1	4.7207	8.225 5	-6.804 9
280	277.3298	274.532 2	289.675 3	-2.670 2	-5.4678	9.675 3
290	293.388 0	292.084 5	284.749 2	3.388 0	2.084 5	-5.2508
300	301.350 1	298.881 0	296.323 6	1.350 1	-1.1190	-3.6764
310	308.9517	314.090 1	316.956 6	-1.048 3	4.090 1	6.956 6
320	317.932 9	322.420 6	320.752 1	-2.067 1	2.420 6	0.752 1
330	334.872 7	335.768 1	336.379 2	4.872 7	5.768 1	6.379 2
340	338.063 8	340.060 9	338.920 1	-1.936 2	0.060 9	-1.079 9
350	352.1180	346.851 9	346.458 8	2.1180	-3.148 1	-3.541 2
360	364.018 1	358.003 6	351.744 7	4.018 1	-1.996 4	-8.255 3
370	369.012 3	376.501 9	374.465 9	-0.987 7	6.501 9	4.465 9
380	374.918 3	376.214 9	379.591 3	-5.081 7	-3.785 1	-0.408 7
390	391.243 1	392.737 6	390.034 8	1.243 1	2.737 6	0.034 8
400	400.278 4	405.727 2	403.197 1	0.278 4	5.727 2	3.197 1

表 4 面源黑体校准实验数据

Tab.4 calibration experimental data of extend blackbody

Setting temperature /℃	Experimental temperature 1 /°C	Experimental temperature 2 /°C	Experimental temperature 3 /°C	Experimental temperature 4 /°C	Experimental temperature 5 /°C	Mean temperature /℃	Mean temperature difference/°C	Mean standard deviation/°C
50	49.766 8	47.4737	56.247 6	45.979 1	51.477 7	50.188 98	0.1890	1.783 840 61
60	60.772 5	53.695 3	64.783 4	63.838 8	61.664 7	60.950 94	0.950 9	1.952 089 79
70	71.673 5	70.581 4	73.749 5	70.689 6	72.335 3	71.805 86	1.805 9	0.583 990 63
80	77.093 2	84.421 4	72.821 3	74.036 9	83.241 0	78.322 76	-1.677 2	2.361 450 51
90	90.756 9	92.466 0	83.166 2	96.638 6	90.126 1	90.630 76	0.6308	2.184 633 79
100	95.592 3	94.348 4	94.416 4	94.012 1	103.211 0	96.316 04	-3.683 9	1.744 314 36
110	108.622 6	104.212 9	114.773 6	106.881 3	112.795 2	109.457 1	-0.542 9	1.926 666 21
120	122.948 1	124.658 6	127.088 1	115.747 5	124.270 5	122.942 6	2.942 6	1.919 148 76
130	133.711 3	136.577 0	132.939 4	131.617 4	131.739 4	133.3169	3.316 9	0.902 859 79
140	135.983 3	141.006 6	134.113 3	132.830 0	142.230 1	137.2327	-2.767 3	1.869 381 61
150	149.102 4	144.637 3	153.563 6	149.106 3	150.271 2	149.3362	-0.663 8	1.430 599 76
160	157.416 6	165.387 1	153.765 7	153.096 9	160.885 5	158.1104	-1.889 6	2.292 863 95
170	165.065 7	168.071 5	163.879 9	163.245 7	173.314 0	166.715 4	-3.284 6	1.846 360 17
180	182.116 6	177.409 6	182.251 5	186.688 6	181.654 1	182.024 1	2.024 1	1.470 515 85
190	189.4290	194.194 7	187.261 0	186.831 4	194.492 4	190.4417	0.4417	1.653 327 85
200	199.562 2	193.155 0	202.461 0	203.070 7	200.590 8	199.767 9	-0.232 1	1.769 338 84
210	212.667 1	203.726 7	213.986 1	220.288 5	214.942 1	213.1221	3.122 1	2.682 319 44
220	221.333 1	223.018 7	221.3310	219.6497	222.699 9	221.606 5	1.606 5	0.598 729 76
230	233.595 8	232.052 0	233.840 5	234.840 5	233.534 6	233.5727	3.5727	0.446 852 74
240	240.936 9	240.891 5	235.757 2	246.162 0	244.997 5	241.7490	1.7490	1.834 717 98
250	252.452 6	253.945 6	253.759 3	249.6528	251.439 2	252.249 9	2.249 9	0.793 628 91
260	263.082 8	263.608 8	264.5296	264.1100	262.072 6	263.4808	3.480 8	0.427 416 03
270	271.262 2	274.7207	275.870 9	263.195 1	272.324 2	271.474 6	1.474 6	2.226 900 01
280	280.124 9	277.3197	273.3798	289.675 2	283.9198	280.883 9	0.883 9	2.793 696 15
290	288.666 7	293.388 0	287.863 0	284.749 2	294.091 0	291.002 2	1.002 2	1.758 147 05
300	298.526 9	301.350 0	297.907 2	296.323 6	300.501 1	298.9218	-1.078 2	0.903 502 80
310	312.955 0	308.947 8	312.650 9	316.956 6	310.890 6	312.480 2	2.480 2	1.328 484 26
320	318.747 7	313.923 9	321.567 1	320.752 1	321.798 2	319.3578	-0.642 2	1.460 823 78
330	335.237 3	334.6298	336.3792	330.283 5	330.283 5	333.3627	3.362 7	1.288 058 33
340	338.288 8	338.063 8	337.882 4	338.920 1	342.283 5	339.0877	-0.912 3	0.817 942 17
350	347.9577	352.1180	345.296 4	346.458 8	351.679 2	348.7020	-1.298 0	1.373 259 19
360	356.4167	364.1188	353.3867	351.744 7	360.878 3	357.3090	-2.6910	2.304 944 14
370	371.1297	364.572 2	374.350 9	374.465 9	371.044 7	371.1127	1.1127	1.796 008 67
380	376.600 1	374.918 3	375.2908	379.591 3	384.525 8	378.185 3	-1.8147	1.785 259 85
390	389.830 1	391.243 1	388.212 3	390.034 8	393.377 0	390.539 5	0.5395	0.857 912 86
400	401.434 7	400.278 4	400.828 5	405.579 1	402.342 3	402.0926	2.092 6	0.936 486 39

很好地响应该波段的光波,接收信号有损。容易造成 图 4(b)和(c)中所示的趋向偏差。

将表 4 的测量数据进行可视化处理,所得结果 如图 5 所示。

Fig.5 Calibration experimental data of extend blackbody

4 结 论

为了达到精确测温的目的,用面源黑体对宽波 段比色测温实验系统进行了多次校准测量,最终选 定中心波长为8645 nm 和10700 nm 的滤光片组成 的实验系统,反复进行了多次实验,搭建的实验系统 均具有较好的稳定性,对实验结果进行了不确定度 分析,平均标准偏差在3℃以内,达到了预期目的。 该实验系统不需要输入目标发射率,避免了发射率 对系统的影响,对于中、低温物体的温度测量研究具 有重要意义。

参考文献:

- [1] Wang Kuihan. Temperature Measurement Technology [M]. Beijing: China Machine Press, 2006. (in Chinese) 王魁汗. 温度测量实用技术 [M]. 北京: 机械工业出版社, 2006.
- [2] Sun Xiaogang, Li Yunhong. Review of the development of temperature measurement technology with infrared thermal imager [J]. Laser & Infrared, 2008, 38 (2): 101 - 104. (in Chinese)

孙晓刚, 李云红. 红外热像仪测温技术发展综述[J]. 激光 与红外, 2008, 38(2): 101-104.

[3] Li Yunhong, Sun Xiaogang, Yang Guibin. Accurate measuring temperature with infrared thermal imager [J]. Optics and Precision Engineering, 2007, 15(9): 1336-1341. 李云红, 孙晓刚, 袁桂彬. 红外热像仪精确测温技术[J]. 光

第1期

学 精密工程, 2007, 15(9): 1336-1341.

[4] Li Yunhong, Zhang Long, Wang Yannian. Second calibration of atmospheric transmission coefficients on temperature measurement of infrared thermal imager in fields [J]. Optics and Precision Engineering, 2008, 18(10): 2143-2148. (in Chinese)

李云红,张龙,王延年.红外热像仪外场测温的大气透过 率二次标定[J].光学 精密工程,2008,18(10):2143-2148.

 [5] Deng Xingkai, Yang Yongjun. Application and development of CCD multi-wavelength radiation thermometry [J]. Metrology & Measurement Technology, 2011, 31 (1): 45-49. (in Chinese)
 邓兴凯,杨永军. CCD 多光谱辐射测温技术的应用与发展

[J]. 计测技术, 2011, 31(1): 45-49.

- [6] Liu Chunhong, Wang Peng, Xia Xutang, et al. Influence of bandwidth on measure error in colorimetry temperature measurement[J]. Journal of Atmospheric and Environmental Optics, 2011, 6(3): 240-242. (in Chinese) 刘纯红, 王鹏, 夏需堂, 等. 比色测温理论中带宽对测量误差 影响的研究[J]. 大气与环境光学学报, 2011, 6(3): 240-242.
- [7] Li Jinjun. An intensity fusion method applied to color CCD-based colorimetric temperature measurement [J]. Computer Measurement & Control, 2012, 20(1): 177-179.(in Chinese) 李进军. 彩色 CCD 比色测温的灰度值融合处理方法研究 [J]. 计算机测量与控制, 2012, 20(1): 177-179.

[8] Yin Wanhong, Li Xudong, Li Gaoping, et al. Temperature measurement using bandpass infrared colorimetric filter [J]. Journal of Applied Optics, 2012, 33(6): 1097-1100. (in Chinese)

阴万宏,李旭东,黎高平,等.带通红外比色滤波测温技术

研究[J]. 应用光学, 2012, 33(6): 1097-1100.

- [9] Wu Haibin, Zhang Tieyi, Zhou Houwei, et al. Selection of two-color wavelengths in colorimetric temperature measurement of uncooled [J]. Journal of Atmospheric and Environmental Optics, 2012(5): 385-389. (in Chinese) 吴海滨,张铁译,周后伟,等. 非制冷红外焦平面阵列比色 测温双波长的选择 [J]. 大气与环境光学学报, 2012(5): 385-389.
- [10] Li Yunhong, Wang Ruihua, Li Yuxuan. Dual waveband colorimetric temperature measurement technology and experiment[J]. Laser & Infrared, 2013, 43(1): 71-75. (in Chinese) 李云红, 王瑞华, 李禹萱. 双波段比色测温技术及实验研

究[J]. 激光与红外, 2013, 43(1): 71-75.

- [11] Zhang Jie. Infrared thermal imaging temperature measurement technology and its application [D]. Chengdu: University of Electronic Science and Technology, 2011. (in Chinese) 张杰. 红外热成像测温技术及其应用研究[D]. 成都: 电子 科技大学, 2011.
- [12] Zhang Xiaolong, Liu Ying, Zhang Ying, et al. Thermometry technology of IR dual color composite simulation system [J]. Acta Photonica Sinica, 2012, 41(2): 173-178. (in Chinese) 张晓龙, 刘英, 张盈, 等. 红外双色复合仿真系统测温技术 研究[J]. 光子学报, 2012, 41(2): 173-178.
- [13] Si Yang, Yang Zhaofei, Wang Jian, et al. Bandwidth on measure error based on colorimetric temperature measurement
 [J]. Nuclear Electronics & Detection Technology, 2012, 32 (12): 1446-1449. (in Chinese)
 司洋,杨兆飞,王鉴,等.基于比色测温的光谱曲线校正
 [J]. 核电子学与探测技术, 2012, 32(12): 1446-1449.