% 44 K% 12 ash Gk 142 2015 4 12 A
Vol.44 No.12 Infrared and Laser Engineering Dec. 2015

Joint reconstruction algorithm for distributed compressed sensing
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Abstract: Distributed compressed sensing is concerned with representing an ensemble of jointly sparse
signals using as few linear measurements as possible. Joint reconstruction algorithm for distributed
compressed perception was based on the idea of using one of the signals as side information, and
then reconstruct other signals by the correlation between the side information and other signals. To
resolve the complexity of reconstruction algorithms and reduce the measurements, two novel joint
reconstruction algorithms for distributed compressed sensing based on joint sparse models were
presented in this paper. Its application in signals and images processing was presented which are on
the basis of demonstrating its feasibility. The result represent that the two novel joint reconstruction
algorithms need fewer measurements for getting the same quality.
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0 Introduction

In recent years, as an effective new technology in
obtaining data, distributed compressed sensing gains more
and more attention in the distributed scenario ™. DCS
relies on the theory of compressed sensing (CS) to reduce
the dimensionality of the signal acquired by each node of
the distributed network supposed to be sparse under some
basis by means of random projections?!. It also exploits
the inter —correlation among the different signals in the
ensemble to lower the number of measurements that each
node needs to acquire without requiring cooperation
among nodes.

With the deepening of the research and the extension
of application, distributed compressed sensing is finding
wider and wider application in the actual scene. And its
research and application in wireless sensor network is
favored by scholars and technicians.

More and more reconstruction algorithms have been
proposed . In distributed compressed sensing, the joint
sparse models provide a way of signal sparse, and applied
to their corresponding signal processing scenario.

In this paper, on the basis of introducing the joint
sparse models, we leverage the difference of innovation to
design two novel joint reconstruction algorithms which are
based on JSM1 and JSM3, and apply the algorithms to
image processing, and verify the performance of the two

joint reconstruction algorithms.
1 Background

1.1 Compressed sensing

Compressed sensing is a novel theory for
measurement coding and reconstruction encoding of
sparse signals™. If the signal itself is sparse, you can
directly to measurement coding; Unless the signal itself is
not sparse, you need to find a sparse basis of the signal,
and find the sparse representation under the basis, then
measurement coding for the sparse representation.

Let us consider a signal X e R", having a sparse

representation under basis Wy,:

X=Y0, || ¢ || =K<N (1)
Among the formulation, || @ || ,is the [, norm of ©.
K is the number of its nonzero entries for 6.
In the coder, We acquire measurements as a vector of
random projections ;
Y=0X=PVO=A%0O (2)
Which, @ e R*"is a sensing matrix, and K<M<N.
In the encoder, the best way to recover the original
signal from its measurements is by solving an optimization
problem trying to minimize the /, norm of the signal in the

sparsity domain. That is:

O=argming || O || , subject to Y=PVO
However, this problem is computationally intractable
due to its NP —hard complexity, so it is common to
consider a relaxed form using the /;, norm, which can be

solved by means of linear programming techniques:

BO=argmin, || O || , subject to Y=PVO

and greedy algorithm, i.e., orthogonal matching pursuit
(OMP) B, For OMP, it can compute the support of the
sparse signal X iteratively, where the support denotes the
index of those columns in @,,,y that have the largest inner
product with signal X. Once the support of the signal is
computed correctly, the pseudo —inverse of the
measurement matrix restricted to the corresponding
columns can be used to reconstruct the actual signal X.
OMP can recover an K sparse signal when the number of
measurements N is nearly proportional to K. In this paper,
two novel joint reconstruction algorithms for distributed
compressed sensing based on OMP are presented'*™".
1.2 Distributed compressed sensing

In a distributed scenario, an ensemble of signals with
both intra and inter—sensor correlations is considered. The
notion of joint sparse has been introduced in Reference[2]
for the framework of DCS. Among the joint sparse models
discussed in Reference [2], we focus on the JSM -1 and
JSM -3 models, according to which the J signals in the
ensemble have sparse innovation components and sparse
Or non—sparse common component, respectively.

0,=0.+0,, (3)
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| Ocl =Kcand || O || =K,;,je[1,]]

A joint reconstruction algorithm can leverage the
structure of the joint sparsity model to improve
performance, namely to achieve higher quality for the
same number of measurements or decrease the number of

measurements needed to achieve the same quality.
2 Joint reconstruction algorithm

In the joint sparse models which are discussed in
References[8—9], each of an ensemble of signals can be
divided into common support and innovations two parts.
The innovations is difference and can be sparse, so we can
just use the difference of innovations to modify the
existing algorithm without thinking about the common
support of an ensemble of signals. In this section, we
present two novel of joint reconstruction algorithm, which
used the difference of innovations based on OMP
algorithm.

2.1 The first joint reconstruction algorithm

Consider an ensemble of signals X;,j € {1,2,---,J},
which are sparse under the same basis W. Here, we choose
signal X; as the side information.

Algorithm 1 steps

(1) Input: A=PY, K;;

(2) Compute: Y, =Y,-Y, je[2,J];

(3) Recover 0,; from Y,; by OMP algorithm:

a. Initialize

Let the support /=@ and the residual r,=Y,; and the
iteration counter 7=1.

b. Identify

Select the largest coordinate A, of Y,=Ar, in absolute
value.

c. Update

Add the coordinate A, to support,/<—/ U {A,} ,update

the residual:
f=argmin, || Y,,~Al;-z || »
rr+1:rr_A * Gr

and increase f=r+1. Return to the identify procedure if #<

K,+1=T, where T is the maximum iteration times, and Al,

denotes the submatrix whose columns are selected from
depending on the index set /.

d. Terminate

If t =T, stop the iterations. Once the support I of
the signalX; j € {2,---,J} isfound, the estimate can be recon-

structed as @,,=Al,-Y, » where define the pesudoinverse

dj

by A=(A*A)™". A* A™* is the conjugate gradient projection
of A.

(4) Compute:éj:@ﬁ@,u;)A(j:‘lféj;

The sparsity of common support of the signals is not
considered in the algorithm discussed above. We just
consider the difference of innovations of each signal to
recover the other signals by using the side information,
here is signal X;. In this way, the correlation between X,
and X, j €[2,J] can be adequately exploited.
Consequently, the information of common part from X,
contributes to the decoding process of Xj, j € {2, -+, J}
converges faster than ever before. As a result, the
algorithm could considerably decrease the total number of
measurements and save large amount of running time.
Therefore, power consumption at both encoding and
decoding sensor will fall down to an proper level that
could be acceptable and easy to be implemented in
practice.

2.2 The second joint reconstruction algorithm

Consider an ensemble of signals X;, j € {2, ---,J},
which are sparse under the same basis W. Here, we choose
signal X; as the side information.

Algorithm 2 steps

(1) Input: A=PV,K;;

J

Z Y, ;?l,lzyl_?c;

J=1

(2) Compute: Y =

~|=

(3) Recover @, from Y,, by OMP algorithm (the
same procedures as Recover @,; from Y,; in section A)
(4) Compute: Y, =Y-Y, j[2,]]
)A/l‘/'= Yd,j— 5}141
(5) Recover @, from Y ,; by OMP algorithm (the

same procedures as Recover 6@, fromY,; in section A)
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(6) Compute: 9j=@1—@,,1+@,,j;)2j=11/9j;

The algorithm discussed above is similar to the first
joint reconstruction algorithm. The difference between
them is the method of computing the difference of
innovations. In the first joint reconstruction algorithm,
proceeding pairwise by using the side information X; and
each of the other signals X, j € {1,2,---,J} in the ensemble
to compute the difference between the measurements of
the side information Y; and those of signal Y, j € {2,--- J}.

But in the second joint reconstruction algorithm, we first

compute the average measurements of all the signals,
that is ¥ ¢ then compare the difference between the

measurements of the side information Y, and f/c and
the difference between the measurements of the side
information Y, and those of signal Y}, j € {2,--- J}. Finally,

add the two kinds of difference as the innovations of the

other signals Y,;. So it is more accurate to compute the

difference of innovations in the second joint

reconstruction algorithm than in the first joint
reconstruction algorithm. And it gains better performance
to recover the signals and needs fewer measurements to

achieve the same quality.

3 Experimental results and analysis

In this section, we will compare the two novel joint
reconstruction algorithm with the OMP algorithm and the
exsited joint reconstruction algorithm.

In test 1, we generate two signals x; and x, in RN,
which are in accord with IMS—1 model, the signal length
N=256, K.=10, K; = 2, to do 50 times cycle for each point
in the curve and obtain the average.

In Figure 1, it displays the average recovery
performance at different number ofmeasurements with the
separate  OMP algorithm and the two novel
jointreconstruction algorithm. Signals for the three
algorithms are generated in thesame way. We draw an
Gaussian measurement matrix ¢ and execute thethree
algorithm while decoding x,. For one thing, considering

saving of numberof measurements, our two novel joint
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Fig.1 Joint vs separation

reconstruction algorithm with obvious improvement. For
another, at the same number of measurements, the two
joint reconstructionalgorithm provided in this paper
achieve more performance than the separate OMP
algorithm, especially the second joint reconstruction
algorithm.

In test 2, we generate two signals x, and x, in RN,
which are in accord with JMS -3 model, the signal length
N=256, K;=25, to do 50 times cycle for each point in the
curve and obtain the average.

In Figure 2, the two novel joint reconstruction
algorithms have been tested on the JSM —3 model of
distributed compressed sensing and compared against the
TECC algorithm presented in Ref. [2]. The two proposed
algorithms rely on the usage of the same sensing matrix for
all nodes, while TECC requires different matrices.
Moreover, the TECC algorithm must compute the
commom compartment of signals, while the two proposed
algorithms just need to compute the difference of the

innovations of signals. Figure 2 shows the MSE as a

=~TECC
~»—Algorithm1
——Algorithm2
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Fig.2 Mean square error vs number of measurements

function of the number of measurements acquired by
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each node. The two proposed algorithms are able to
outperform TECC algorithm and also be suitable for the
JSM -1 model.

4 Application in image processing

We use news video images photograph a part of the
production line, then the computer system collect and
analyze the contents of the photograph and ensure the
production line running well, which is in order to achieve
the purpose of quality control. The contents of every
picture are complex, but a collection of all the news video
images will have high correlation, because the news video
images only have a small difference (which is sparse). In
the same news video, each video frame may not be sparse,
but the small differences between the video frames can be
sparse. Such image data compression, all can apply joint
reconstruction algorithm to reconstruct.

Test: two news images of 256 x256, which have
different parts. We use image a as the side information,
reconstructing image b by the two novel joint
reconstruction algorithm, and compared the quality with
the two novel joint reconstruction algorithm. We just need
to recover the difference of innovations to reconstruct
image b, which reduce the number of iterations and
narrow the computing time. Especially, the second joint
reconstruction algorithm gains a better quality.

The original image a and b is shown in Fig.3 (a) and

Fig.3(b) respectively.

Fig.3 Original images

Using the first joint reconstruction algorithm to
reconstruct image b under different sampling rates is

shown in Fig.4.

Fig.4 The first joint reconstruction algorithm

Using the second joint reconstruction algorithm to
reconstruct image b under different sampling rates is

shown in Fig.5.

M=120

Fig.5 The second joint reconstruction algorithm

Contrast the performance of the two joint
reconstruction algorithms:

Figure 6 shows the relationship between measurements
and PSNR. From the figure, we know that the two joint
reconstruction algorithms allow to decrease the number of
measurements needed to achieve a target quality in the
reconstruction or to improve quality for the same number
of measurements, which the separate OMP algorithm
cannot reach. The second joint reconstruction algorithm

perform more obvious.
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Fig.6 Joint vs separate

5 Conclusion

We proposed two novel joint reconstruction

algorithms for the JSM1 and JSM3 models in distributed
the use of side

compressed sensing. Thanks to

information, it is possible to devise methods that avoid the
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need to reconstruct the common component, thus allowing

to deal with the case of a non—sparse common component

in a straightforward manner, especially in reconstructing

video frames.
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