采用小孔等离子体开关实现TE CO₂ 激光窄脉冲整形

柯常军1,吴天吴1,2,孔心怡1,2,钟艳红1,吴 谨1

(1. 中国科学院电子学研究所,北京 100190; 2. 中国科学院大学,北京 100049)

摘 要:典型的 TE CO₂激光脉冲,通常由高功率窄脉冲(100 ns)和低功率长拖尾部分(3~5 μs)组成。 采用一种简单的小孔等离子体开关技术可以实现对低功率长拖尾部分的有效吸收和散射,保留需要 的高功率窄脉冲前沿部分,达到激光脉冲压缩和整形目的。详细研究了小孔位于不同离焦距离时整 形激光脉冲波形的变化,获得了整形激光脉宽、能量与离焦距离的变化关系,实现了 50~110 ns 的窄 脉冲 CO₂激光输出。进一步研究发现,小孔等离子体开关的使用寿命主要由激光脉冲能量、重复频 率、整形脉冲宽度决定。通过该技术实现的窄脉冲 CO₂激光可以用于极紫外光刻等离子体光源、激光 雷达等领域的研究。

关键词:激光脉冲整形; TE CO₂激光; 小孔; 等离子体开关 中图分类号:TN241 文献标志码:A DOI: 10.3788/IRLA201847.1206007

TE CO₂ laser narrow pulse modification based on a pinhole plasma shutter

Ke Changjun¹, Wu Tianhao^{1,2}, Kong Xinyi^{1,2}, Zhong Yanhong¹, Wu Jin¹

Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The typical pulse from a TE CO_2 laser consists of a 100 ns sharp spike followed by a long tail region spanning about $3-5 \mu s$. A simple pinhole plasma shutter was employed for eliminating the long tail part of the pulse due to strong laser absorption and scattering. Moreover, it remained the sharp spike of the pulse, thus the pulse width was modified. The shaped laser pulse waveforms at different pinhole positions were measured. The relationships between the laser pulse width, laser energy and defocus length were obtained, the pulse width of the CO_2 laser from 110 ns to 50 ns was varied using the method. Further study indicates that the life of the pinhole plasma shutter is mainly determined by the laser pulse energy, repetition frequency, and shaped pulse width. It is shown that this plasma shutter will be used as a tool for short CO_2 laser pulse shaping in the search for EUV source and lidar development.

Key words: laser pulse modification; TE CO₂ laser; pinhole; plasma shutter

收稿日期:2018-07-11; 修订日期:2018-08-20

基金项目:国家自然科学基金(61475157)

作者简介:柯常军(1973-),男,研究员,博士,主要从事红外激光技术及其应用方面的研究。Email:cjke@mail.ie.ac.cn

0 引 言

众所周知,高功率高重复率 TE CO₂ 激光在激光 加工和军事上有广泛的用途。TE CO₂ 激光通常由高 功率窄脉冲(100 ns)和低功率长拖尾部分(3~5 μs)组 成^[1-4]。在某些要求高功率窄脉冲激光的应用领域, 典型 TE CO₂ 激光脉冲的低功率长拖尾部分会对应 用产生不利影响,必须想办法去除。比如在激光雷达 应用中,长拖尾部分会降低分辨率^[5];在倍频过程应 用中,长拖尾部分会影响倍频的转换效率,甚至损坏 晶体^[6];在极紫外激光等离子体光源应用中,低功率 长拖尾部分对极紫外带内辐射不能形成有效贡献, 导致较低的转换效率^[7-8]。

获取短脉冲的 CO2 激光脉冲整形技术通常有锁 模、调Q、烧蚀金属靶材和等离子体开关等方法。其 中,锁模技术由于激光脉冲整形后输出的脉冲能量 太低,需要对其放大后才能应用,方案相当复杂^[9]: 声光或电光调 Q 技术则需特殊设计的同步方案来 精确控制电光开关时间,得到的脉冲能量也很低,且 调Q晶体价格高昂,容易损坏^[10-11]。烧蚀金属靶材技 术虽然能获得超短脉冲(2 ns),由于金属靶材的烧蚀 和散射,使得整形后的激光脉冲能量下降为初始激 光能量的几十分之一,实际无法真正实用[12]。等离子 体开关技术作为一种良好的激光脉冲整形方法,使 TE CO₂激光有望在激光雷达、激光倍频、极紫外激 光等离子体光源等方面得到应用。最初的等离子体 开关技术通过激光脉冲聚焦在专门的背景气体中形 成等离子体开关,在激光脉冲的某个特定时刻形成 等离子体,激光脉冲的剩余部分被等离子吸收,达到 整形激光脉冲的目的[13],这种技术进一步发展到通 过增加高压放电或另一路激光脉冲等辅助手段快速 击穿背景气体,形成等离子体开关[14-15]。以上这些等 离子体技术需要专门的气体池和额外的辅助装置, 结构相对复杂。文中采用一种简单的小孔等离子体 开关技术可以有效切断 TE CO₂ 激光脉冲低功率长 拖尾部分,达到压缩激光脉冲宽度的目的,该技术具 有结构简单、操作方便等优点。详细研究了小孔位置 对整形激光脉冲波形的影响,获得了整形激光脉宽、 能量与离焦距离的关系,实现了 50~110 ns 的窄脉冲 CO2激光输出。通过该技术实现的窄脉冲 CO2激光

可以用于极紫外光刻等离子体光源、激光雷达等领域的研究。

1 实验原理和装置

脉冲CO₂激光在空气中的击穿阈值约为10°W/cm^{2[16]}, 在固体表面附近击穿阈值约为10⁷~10⁸W/cm²,因此 可以将带孔表面放置在透镜焦点附近产生等离子 体。在小孔周围的固体表面由于击穿阈值较低,可以 形成等离子体,等离子体迅速向四周扩散,入射激光 被等离子体迅速吸收,等离子体密度快速增加,等离 子体频率 w₀ 与等离子体密度 n 的关系由公式(1)得:

$$w_p = \sqrt{\left[(ne^2/(m\varepsilon)) \right]} \tag{1}$$

式中:e 为电子电量;m 为电子质量; c 为介电常数。 由上式可知,等离子体密度 n 的增加会导致 w_p 的快 速变大,当 w_p 大于入射激光频率时,等离子体层由 透明介质变为非透明物质,等离子体起关断作用,使 得 CO₂ 激光脉冲的长拖尾部分无法通过, 入射激光 脉冲被切断, 从而实现对激光脉冲宽度的控制和压 缩。图 1 给出了小孔等离子开关原理图,图 2 是小孔 等离子开关的实验装置图。

图 1 小孔等离子开关原理图

Fig.1 Schematic of pinhole plasma shutter

图 2 小孔等离子开关实验装置图 Fig.2 Experimental setup of pinhole plasma shutter

采用自制的 TE CO₂ 激光器,激光输出波长为 10.6 μm,采用总气压为 35 kPa、CO₂:N₂:He 为 1:1:4 的激光混合气,放电电压为 27 kV。观察测得的激光

脉冲波形,高功率窄脉冲部分的能量与低功率长拖 尾部分的能量比为 45:55,激光脉冲宽度(FWMH)为 110 ns,激光脉冲全宽约为 3 µs。从激光器输出激光脉 冲经直径为 2 cm 的光阑后,激光脉冲能量为450 mJ。 随后激光分别经焦距为 25.4 cm 的两个相同的 ZnSe 平凸镜聚焦和准直,实验过程中两透镜间距保持 50.8 cm 不变。焦点处光斑直径由公式(2)可得:

d=4 λfM²/πD (2) 式中:λ为激光波长;f为聚焦透镜焦距;D为激光束 聚焦前的直径;M²为光束质量因子,测得M²≈6。激 光的焦斑直径为1.1 mm,与实际测量值吻合。为保 证小孔开关在焦点处可以有效形成等离子体,又保 证通光孔足够大以便提取较多能量,取孔的直径为 1 mm。人射和出射激光脉冲能量通过GentecED500 能量计测量。激光准直后采用滨松 B749 光子牵引探 测器和 TDS220 示波器可以得到激光脉冲波形。

2 实验结果

为保证实验结果的准确性,实验过程中两透镜 中心和透镜小孔中心始终在光轴上。笔者制作了厚 度为1mm,材料分别为黄铜、铝和环氧树脂的三种 小孔开关(孔径为1mm),将其分别置于透镜焦点处, 由于固体表面的击穿阈值较低,均能形成等离子体, 通过对准直后的激光波形进行探测,发现均能对人 射激光进行整形,有效切断原始激光的长拖尾部分, 由于三种材料的 CO₂激光的击穿阈值(8~10 MW/cm²) 差别不大,脉冲波形无明显差别。采用更大孔径的小 孔(孔径为1.5 mm)时,聚焦激光无阻碍通过,聚焦后 的激光能量和入射激光能量相同,原因是聚焦功率 密度低于空气中的击穿阈值,没有出现等离子体击 穿现象,因此无能量损失。且激光脉冲波形和原始激 光脉冲波形一致,未发生整形。

利用铝材料小孔开关(孔径为1mm)研究了整形 激光脉冲波形随小孔在光轴方向焦点附近不同位置 的变化情况,结果如图3所示,(a)为未整形激光脉 冲,(b)为整形激光脉冲(x=0),(c)为整形激光脉冲(x= 1 cm),(d)为整形激光脉冲(x=3 cm)。可以清楚地看 出,原始激光脉冲全宽约为3µs,经小孔等离子体开 关整形后激光脉冲大幅变窄,小孔位置在 x=3 cm 时, 得到的整形激光脉冲全宽为 200 ns。 图4 给出了激 光能量和脉宽随离焦距离 x (小孔和透镜焦点的距离)的变化关系。发现小孔在透镜焦点处时,整形激 光脉冲能量最大,此时整形激光脉冲恰能保留原始 脉冲的高功率窄脉冲部分,有效去除原始脉冲的低

功率窄脉冲部分。随小孔向聚焦透镜方向缓缓移动,

被小孔周围固体表面阻挡的激光能量逐渐增加,整形 激光脉冲能量逐渐减小,整形激光脉冲峰值功率逐渐 下降,整形激光脉冲宽度也逐渐减小。当 x≥5 cm 时, 由于能量密度的降低,在小孔周围无法形成有效的 激光等离子体,通过小孔的激光脉冲无法进行窄脉 冲整形。

还对铝材料小孔开关的使用寿命进行了测试, 激光器以 10 Hz 频率,保持脉冲能量不变(450 mJ)发 射激光 20 min. 整形后的激光脉冲波型保持了良好 的一致性 (整形激光脉冲波型是否变化可以作为小 孔开关使用寿命的判断依据)。然后取下小孔进行观 察,发现小孔尺寸大小未发生变化,小孔周围的铝材 表面颜色略有变化,不影响小孔开关的继续使用。影 响小孔开关寿命的因素包括入射激光能量、重复频 率、整形脉冲宽度;入射激光能量越大,对小孔材料 的烧蚀程度愈大,开关的寿命越短;重复频率越高, 开关材料上的热量累积效应越明显,对小孔材料的 烧蚀速度越快,开关的寿命越短:整形脉冲宽度主要 由小孔开关的离焦距离决定,小孔在透镜焦点处,小 孔开关的寿命最长,原因是原始脉冲的高功率窄脉 冲部分全部透过,开关材料只对原始脉冲的低功率 窄脉冲部分形成阻挡,材料烧蚀程度最小。随小孔离 焦距离逐步增加,整形脉冲宽度变窄,被小孔周围材 料表面阻挡的激光能量、峰值功率逐渐增加,材料烧 蚀程度速度加快。另外由于小孔开关制作简单、造价 低廉,一旦损坏更换也十分方便,可以满足窄脉冲激 光的应用需求。

3 结 论

综上所述,文中通过一种小孔等离子体开关技术,实现对 TE CO₂激光脉冲中的低功率长拖尾部分 有效吸收和散射,保留需要的高功率窄脉冲前沿部 分,以达到激光脉冲压缩和整形目的。通过对黄铜、铝 和环氧树脂等不同材料的小孔开关,研究了小孔位于 不同离焦距离时整形激光脉冲波形的变化。发现小孔 在透镜焦点处时,整形激光脉冲能量最大,实现了 50~ 110 ns 的窄脉冲 CO₂激光输出。最后对小孔开关的使 用寿命进行研究,当入射激光能量越大、重复频率越 高、整形脉冲宽度越窄时,其使用寿命都会缩短。通过 该技术实现的窄脉冲 CO₂激光有望在极紫外光刻等 离子体光源、激光雷达等领域得到重要应用。

参考文献:

- Fried N M, Fried D. Comparison of Er:YAG and 9.6 μm TE CO₂ lasers for ablation of skull tissue [J]. *Lasers in Surgery and Medicine*, 2002, 28(4): 335–343.
- [2] Nilaya J Padma, Saiprasad M B. Generation of continuously tunable 5 μm um coherent radiation by second harmonic conversion of the emission of a multi-atmosphere TE CO₂ laser in AgGaSe₂ [J]. *Laser Physics*, 2014, 24(8): 085401.
- [3] Wang Yunfei, Wu Jin, Liu Shiming. Tuning characteristics of long pulse TE CO₂ lasers[J]. *Infrared and Laser Engineering*, 2008, 37(2): 226–229. (in Chinese)
- [4] Zhang Kuo, Lu Jun, Yang Guilong. Estimation of far field divergence of high power TEA CO₂ lasers [J]. *Infrared and Laser Engineering*, 2015, 44(3): 2286–2290. (in Chinese)
- [5] Gasmi T, Zeaiter H A, Ropero G. Plasma-based nitrogen tail pulse shutter for CO₂ TEA lidar dial systems [J]. *Appled Physics B*, 2000, 71(2): 169–175.
- [6] Ren Deming, Zhang Lili, Qu Yanchen. Application of plasma switch in TEA CO₂ laser multiplication [J]. *Chinese Journal* of Laser, 2004, 31(9): 1061–1064. (in Chinese)
- [7] Tao Y, Tillack M S, Amin N, et al. CO₂ laser system for fundamental research related to an extreme ultraviolet lithography source [J]. *Review of Scientific Instruments*, 2009, 80: 123503.
- [8] Harilal S S, Sizyuk T, Sizyuk V. Efficient laser produced plasma extreme ultraviolet sources using grooved Sn targets
 [J]. Applied Physics Letters, 2010, 96: 111503.
- [9] Houtman H, Meyer J. Ultrashort CO₂ laser pulse generation by square-wave mode locking and cavity dumping [J]. *Optics Letters*, 1987, 12(2): 87–90.
- [10] Hoshino H, Suganuma T, Asayama T. LPP EUV light source employing high power CO₂ laser [C]//SPIE, 2008, 6921: 692131.
- [11] Staupendahl G. A novel Q –switched CO₂ laser and its applications[J]. *Laser Technik Journal*, 2014, 11(5): 22–25.
- [12] Donnelly T, Mazoyer M, Lynch A, et al. CO₂ laser pulse shortening by laser ablation of a metal target [J]. *Review of Scientific Instruments*, 2012, 83: 035102.
- [13] Qua Y, Hu X, Ren D. Research on plasma shutter for pulseshaping of TEA CO₂ laser[C]//SPIE, 2002, 4914: 273.
- [14] Bellecc C, Bellucci I, Gaudio P. Clipping the tail of a TE– CO₂ laser pulse using a gas breakdown technique for high resolution chemical plume detection [J]. *Review of Scientific Instruments*, 2003, 74: 1064.
- [15] Kenan Qu, Nathaniel J. Laser pulse sharpening with electromagnetically induced transparency in plasma [J]. *Physics of Plasmas*, 2017, 24: 073108.
- [16] Smith D C, Brown R T. Aerosol-induced air breakdown with CO₂ laser radiation [J]. *Journal of Applied Physics*, 1975, 46: 1146–1153.