

LD泵浦的高重复频率全固态飞秒激光器(特邀)

郑立 汪会波 田文龙 张大成 韩海年 朱江峰 魏志义

LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited)

Zheng Li, Wang Huibo, Tian Wenlong, Zhang Dacheng, Han Hainian, Zhu Jiangfeng, Wei Zhiyi

在线阅读 View online: https://doi.org/10.3788/IRLA20201069

您可能感兴趣的其他文章

Articles you may be interested in

高功率掺镱全固态飞秒激光器

High power Yb-doped all-solid-state femtosecond lasers 红外与激光工程. 2019, 48(11): 1105001-1105001(7) https://doi.org/10.3788/IRLA201948.1105001

基于45°倾斜光栅的重复频率可切换被动谐波锁模光纤激光器

Passively harmonic mode-locked fiber laser with switchable repetition rate based on a 45° tilted fiber grating 红外与激光工程. 2018, 47(8): 803007-0803007(5) https://doi.org/10.3788/IRLA201847.0803007

高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)

High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited) 红外与激光工程. 2019, 48(1): 103001-0103001(9) https://doi.org/10.3788/IRLA201948.0103001

脉冲LD泵浦千赫兹1.57 μm全固态激光器

Pulse LD pumped kilohertz 1.57 µm solid-state laser 红外与激光工程. 2018, 47(1): 105003-0105003(4) https://doi.org/10.3788/IRLA201847.0105003

双SESAM被动锁模超短脉冲光纤激光器

Double SESAM passively mode-locked ultrashort pulse fiber laser 红外与激光工程. 2018, 47(5): 505002-0505002(6) https://doi.org/10.3788/IRLA201847.0505002

全固态皮秒径向偏振激光器及其加工特性

All-solid-state picosecond radially polarized laser and its processing characteristics 红外与激光工程. 2019, 48(1): 106003-0106003(6) https://doi.org/10.3788/IRLA201948.0106003

LD 泵浦的高重复频率全固态飞秒激光器(特邀)

郑 立1, 汪会波1.2, 田文龙1, 张大成1, 韩海年2, 朱江峰1, 魏志义2

(1. 西安电子科技大学物理与光电工程学院,陕西西安710071;

2. 中国科学院物理研究所北京凝聚态物理国家实验室,北京100190)

摘 要: GHz 飞秒激光器相比于传统的百 MHz 飞秒激光器,其频域中相邻纵模的间隔更大、可分辨率更高,相同光谱范围内纵模密度更小,每个纵模分得的平均功率相对更高,在梳齿可分辨光谱学、直接频率梳光谱学、光学任意波形产生以及天文摄谱仪校准等诸多领域有着更重要的应用价值。文中从 GHz 飞秒脉冲的产生方案出发,着重对激光二极管泵浦的 GHz 重复频率全固态飞秒激光的产生方案以及相应的技术挑战进行了详细介绍,然后重点综述了国际上基于 SESAM 被动锁模以及克尔透镜锁模全固态 GHz 飞秒激光器的研究进展,并结合笔者所在课题组取得的初步研究结果对全固态 GHz 重复频率飞秒激光器的应用价值以及笔者所在课题组的研究目标进行了展望。 关键词: GHz 重复频率; 全固态飞秒激光器; 克尔透镜锁模; 被动锁模 中图分类号: TN242 文献标志码: A DOI: 10.3788/IRLA20201069

LD-pumped high-repetition-rate all-solid-state femtosecond lasers (*Invited*)

Zheng Li¹, Wang Huibo^{1,2}, Tian Wenlong¹, Zhang Dacheng¹, Han Hainian², Zhu Jiangfeng¹, Wei Zhiyi²

(1. School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;

2. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: Compared with traditional ~100 MHz femtosecond lasers, the mode spacing is larger of GHz femtosecond lasers so that each comb can simply be resolved. Furthermore, the less dense of longitudinal modes results in higher average power. Therefore, it has more important application value in many research fields, such as comb-resolvabled spectroscopy, direct optical frequency comb spectroscopy, optical arbitrary waveform generation and astronomical spectrograph calibration. In this review, the generation schemes of GHz femtosecond pulses and the corresponding technical challenges of GHz-repetition-rate all-solid-state femtosecond lasers pumped by laser diode were introduced in detail firsly. Secondly, the international research progresses of all-solid-state GHz femtosecond lasers based on SESAM passively mode-locking and Kerr-lens mode-locking were summarized. Finally, the application value and research object of our group in all-solid-state GHz-repetition-rate femtosecond lasers were forcasted based on our preliminary research results.

Key words: GHz repetition rate; all-solid-state femtosecond lasers; Kerr-lens mode locking; passively mode locking

收稿日期:2020-09-12; 修订日期:2020-10-14

基金项目:国家自然科学基金 (11774277, 60808007); 中央高校基本科研业务费 (JB190501, ZD2006); 陕西省自然科学基础研究计划 (2019JCW-03)

作者简介:郑立(1995-),男,博士生,主要从事全固态激光技术方面的研究。Email: zhengli@stu.xidian.edu.cn 导师简介:朱江峰(1980-),男,教授,博士,主要从事超快激光技术方面的研究。Email: jfzhu@xidian.edu.cn

0 引 言

1960年, T. H. Maiman 研制出第一台脉冲运转的 红宝石激光器, 一年后, A. Javan 等人搭建了第一台连 续运转的激光器, 并证明了激光的相干性^[1-2]。在此 之后, 激光凭借其高亮度、高方向性和高相干性的特 点吸引着大批科学家的注意。1965年, 锁模技术的诞 生将红宝石激光器的输出脉宽减小到皮秒 (ps, 10⁻¹² s) 量级^[3], 1981年, R. L. Fork 在染料激光器中使用碰撞 锁模技术又使得激光脉冲宽度到达飞秒 (fs, 10⁻¹⁵ s) 量级^[4]。1985年, 啁啾脉冲放大 (Chirped Pulse Amplification, CPA) 技术的发明^[5] 使超短激光的峰值功 率可到达拍瓦 (PW, 10¹⁵ W) 量级^[6]。

随着超快激光技术的不断发展, 阿秒 (as, 10⁻¹⁸ s) 量级的时间尺度、PW 量级的峰值功率在为科学前沿 研究领域带来新的研究方法和契机的同时,基于超短 脉冲激光诞生的飞秒光学频率梳^[7]像一个精密的齿 轮一样将无线电和光学领域相干连接起来,为精密计 量学的发展打开了一扇新的大门[8-9]。锁模激光器的 重复频率是表征光学频率梳的重要特性之一,特别是 当飞秒光学频率梳应用于光谱学时,需要尽可能高的 重复频率。而高重复频率的优势主要体现在以下两 个方面:首先,在频域中,相邻梳齿之间的间隔代表锁 模激光器的重复频率,重复频率越高,激光脉冲的各 个纵模之间的频率间隔越大,这意味着在同等光谱覆 盖范围内梳齿密度更小,因此在相同平均功率下,每 个纵模可分得的平均功率相对更高,在用于光频率拍 频实验测量时,可获得更高的信噪比;其次,梳齿间隔 越大,降低了对波长计或光谱仪的分辨率要求,越容 易利用商用的光谱仪分辨出每根梳齿,实现梳齿线 宽精度的高精度光谱分析。因此,在宽带梳齿可分辨 光谱学[10]、直接频率梳光谱学[11]、光学任意波形合 成[12]、超稳定微波参考[13]以及天文摄谱仪校准[14]等 诸多应用中,都需要借助基于高重复频率飞秒激光器 产生的光学频率梳。

文中从 GHz 重复频率的飞秒激光器的产生方案 出发,首先对其面临的技术挑战以及国际上常用的实 验方法进行了详细介绍,之后重点综述了国际上全固 态 GHz 飞秒激光器的研究进展,并结合笔者所在课 题组该方面的初步研究结果对其进一步的发展方向 以及课题组后续研究目标进行了展望。

1 产生 GHz 重复频率飞秒脉冲的挑战

GHz重复频率的飞秒激光可以通过腔外滤波的 方法获得,也可以直接从振荡器输出。腔外滤波主要 通过法布里-珀罗 (Fabry-Perot, F-P) 腔^[15] 来实现, 根 据 F-P 干涉仪的多光束干涉原理,将原腔的纵模滤掉 一部分,实现重复频率的倍增。但是也存在两个问 题:一是边模泄漏,如果 F-P 腔的线宽过宽,本该滤掉 的临近的纵模则会透过;二是带宽问题, F-P 腔镜膜系 产生的色散使腔的纵模间隔不均匀,本该透过的模式 可能就会偏离透过峰。从振荡器直接输出 GHz 重复 频率的飞秒脉冲主要有三种方案,分别是谐波锁模[16]、 基于半导体可饱和吸收镜 (Semiconductor Saturable Absorber Mirror, SESAM)的被动锁模[17]以及克尔透镜 锁模 (Kerr-lens Mode-locking, KLM)^[18]。其中谐波锁 模一般多应用于光纤激光器中,根据孤子光脉冲面积 定理,当脉冲的能量超过一定值时,会分裂形成高阶 孤子,在锁模激光器中,这些高阶孤子的重复频率是 基频的倍数,因此被用来倍增重复频率,但是谐波锁 模产生的 GHz 飞秒脉冲的时间抖动要比在基频工作 的激光器强得多^[19]。SESAM 被动锁模技术和 KLM 技术则是钛宝石飞秒激光器和激光二极管 (LD) 泵浦 的全固态飞秒激光器中最常用的手段,根据重复频率 与谐振腔腔长的反比关系,为了获得 GHz 重复频率, 缩短腔长是唯一也是最直接的方法。文中,笔者将主 要针对 SESAM 被动锁模技术和 KLM 技术在应用于 GHz全固态飞秒激光器产生时面临的技术挑战进行 详细分析。

1.1 GHz 重复频率对谐振腔结构的限制

GHz 重复频率对飞秒激光器结构的限制主要体 现在两个方面,首先是对谐振腔腔长的限制,使得重 复频率在1GHz 以上的飞秒激光器可用腔型单一,并 且搭建困难。如图1所示,"X型"线性谐振腔是全固 态飞秒激光器中最基本的腔型,脉冲激光在腔内振荡 的重复频率与其在谐振腔内循环一周的光程有关,具 体可表示为:

$$f_{\rm r} = \frac{c}{2L} \tag{1}$$

式中: c为光速; L为谐振腔的光学长度。因此,为了获得重复频率大于1 GHz 的超短脉冲,谐振腔的腔长必须小于 150 mm,使腔内各光学元件的空间摆放位置

都受到很大限制。对于 KLM 飞秒激光器而言, 以图 1 所示的谐振腔腔型为例,包括两片凹面镜 (M1、M2, 曲率半径一般小于 50 mm) 形成的共焦腔、用于产生 激光的增益介质、用于补偿腔内正色散的色散补偿 镜 M3 以及耦合输出镜 OC。只要保证谐振腔的光学 腔长小于 150 mm, 借助 KLM 技术和合理的腔内色散 管理,即有望获得 GHz 飞秒脉冲输出。对于 SESAM 被动锁模飞秒激光器而言,与KLM 腔型相比,需要一 块 SESAM 作为启动锁模和稳定锁模的光学元件,因 此为了保证 GHz 的重复频率,需要根据 SESAM 的锁 模原理和特性对图1所示的腔型进行改进,图2即为 常用的 SESAM 被动锁模 GHz 飞秒激光器腔型。其 中平面双色镜 M1 和凹面镜 M2 作为腔镜,同时 M2 也作为色散补偿镜, M3 在作为耦合输出镜的同时, 也 带有一定曲率,将激光聚焦至 SESAM 启动锁模。关 于高重复频率条件下的 KLM 和 SESAM 被动锁模的 技术难点将在下一节进行详细讨论。

以上两种谐振腔结构均为线性腔,而对于高重复频率的 KLM 激光器,不得不介绍一种更为实用的腔型——"蝴蝶形"环形腔,如图 3 所示。在环形腔中,脉冲激光的重复频率为:

$$f_{\rm r} = \frac{c}{I} \tag{2}$$

显而易见,与线性腔相比,在谐振腔的光学长度 相同时,环形腔可支持的重复频率更高,因此,在同等 重复频率下,环形腔对腔内几何结构容忍度更大,这

图 1 "X 型"高重复频率谐振腔

图 2 SESAM 被动锁模高重复频率谐振腔

图 3 "蝴蝶形"高重复频率环形腔

Fig.3 "Bow-tie" high-repetition-rate ring cavity

也是环形腔用于 GHz 重复频率 KLM 飞秒激光器的 最大优势。除此之外,与线性腔相比,激光脉冲在环 形腔中传输时,每一次循环只通过晶体一次,因此引 入的色散会减小一半,使腔内不易被补偿的高阶色散 显著减小,有利于宽光谱飞秒激光的获得;同时,环形 腔中没有空间烧孔效应,自相位调制和群延时色散在 腔内自动同性分布,并且在高功率不对称的谐振腔结 构中,也可有效抑制腔内双脉冲及多脉冲效应。

通过对以上几种目前最常用的 GHz 飞秒激光 器腔型的介绍,结合图 4、图 5 中展示的重复频率为 1.2 GHz^[20]的线性腔飞秒激光器实物图以及 15 GHz^[21] 的环形腔飞秒激光器实物图,不难理解 GHz 飞秒激 光器在搭建过程中的困难。GHz 重复频率对飞秒激 光器结构的另一限制体现在腔内可用光学元件的数 量上。因为对于飞秒激光器而言,除了必须使激光在 谐振腔内满足自在现条件,还需要合理的色散补偿, 从而使锁模脉冲宽度处于飞秒量级,而光学元件数量 的限制使色散补偿变得困难。

常用于超短脉冲色散补偿的元件主要有棱镜对 以及 Gires-Tournois 反射镜 (GTI 镜)或者啁啾反射 镜。棱镜对在用于补偿腔内色散时,可以通过控制棱 镜插入量以及分开距离很方便地调控引入的二阶色 散,但是在 GHz 重复频率的腔长要求下,显然不适 用。只在 1994 年, M. Ramaswamy-Paye 等人在棱镜对

图 4 1.2 GHz 线性腔飞秒激光器^[20] Fig.4 1.2 GHz linear femtosecond laser^[20]

图 5 15 GHz 环形腔飞秒激光器^[21] Fig.5 15 GHz ring femtosecond laser^[21]

补偿色散的原理上做了些许改动,使用单块棱镜作为 色散补偿元件,为长度大于3mm的钛宝石晶体提供 了足够的负色散,同时也作为耦合输出镜,谐振腔腔 长小于 15 cm, 得到了重复频率为 1 GHz、脉冲宽度 为111 fs 的锁模结果^[22], 如果继续使用棱镜补偿色散 很难获得更高的重复频率。GTI镜与啁啾反射镜用 于补偿色散时,没有空间位置上的要求,因此更适合 用于 GHz 飞秒激光器中。GTI 镜是在标准的四分之 一膜系中,插入一个二分之一波长的奇数倍的低折射 率层,也可以当作一个反射式干涉仪,能提供大量的 群延迟色散 (Group Delay Dispersion, GDD), 但是难以 在宽带范围内获得均匀的色散特性。因此在百 MHz 的飞秒激光器中,常常选用多片 GTI 镜配合使用,使 其在预想的带宽范围内提供足够的 GDD, 最终获得 更接近傅里叶变换极限的飞秒脉冲。而在 GHz 飞秒 激光器中,由于光学元件数量受限,往往只能使用一 到两片 GTI 镜, 因此只能补偿有限带宽内的正色散, 限制了飞秒脉冲宽度的进一步压缩。啁啾反射镜通 过连续改变膜层的共振波长,使整个反射镜在保持高 反射率的同时,给予不同波长以不同的延迟,可以在 宽带范围内提供负色散,但是色散量较小,并且单片 啁啾反射镜的群延迟色散曲线会形成振荡,使色散补 偿不充分。1997年, F. X. Kärtner 等人提出了双啁啾 镜的概念[23],通过啁啾反射镜的配对使用有效减小 了振荡,在宽带范围内获得了均匀的色散特性,但是 可提供的色散量依旧较小。总体而言, GTI 反射镜与 啁啾反射镜将色散元件与镜片集成化,更适合用于 GHz 飞秒激光器中的色散补偿, 也是目前最常用的色 散补偿手段。

1.2 GHz 重复频率条件下的锁模运转

GHz重复频率下腔长的缩短在限制腔型结构和

可用的光学元件数量的同时,导致的单脉冲能量大幅 降低是实现 SESAM 被动锁模或者 KLM 获得 GHz 飞 秒脉冲的最大挑战之一。飞秒脉冲的重复频率f,与单 脉冲能量E,的关系可以简单表示为:

$$E_{\rm p} = \frac{P_{\rm av}}{f_{\rm r}} \tag{3}$$

式中: *P*_{av}为飞秒脉冲的平均输出功率。因此,大多数 GHz 飞秒激光器的单脉冲能量都小于 1 nJ,甚至仅有 几十 pJ,在如此低的脉冲能量下,无论是 SESAM 被 动锁模亦或是 KLM,都变得非常困难。

对于 LD 泵浦的全固态 SESAM 被动锁模激光器 而言,重复频率越高,越容易发生不稳定的调 O^[24-25], 而调O锁模的重复频率在kHz范围,具有较高的脉冲 能量,很有可能使腔内元件受到光学损伤,有研究指 出可以通过控制 SESAM 的反饱和吸收特性来更好地 抑制调Q锁模的发生。对于 SESAM 而言, 激光能量 越高,其反射率越高,对应的损耗越小,然而当入射激 光能量超过一定值时,反射率会变低,出现翻转现 象。研究表明,这种反射率的翻转可能是由于 SESAM 中发生的双光子吸收、俄歇复合、热载流子产生、晶 格升温等造成,这种效应被称作反饱和吸收效应,可 用 SESAM 的反饱和吸收通量F2定量描述^[26],如果只 考虑双光子吸收作为反饱和吸收的来源,对于孤子脉 冲, F2与脉冲能量成反比^[27]。用Ecrit表示稳定锁模所 需要的临界脉冲能量,它与 F_2 以及 SESAM 的参数、 腔内激光参数之间的关系可表示为[27]:

$$E_{\rm crit}^2 = \frac{F_{\rm sat,abs}A_{\rm abs}\Delta R}{\frac{1}{F_{\rm sat,ean}A_{\rm eain}} + \frac{1}{F_2A_{\rm abs}}}$$
(4)

式中: *F*_{sat,abs}和*F*_{sat,gain}分别代表 SESAM 和增益介质的 饱和通量; *A*_{abs}和*A*_{gain}为 SESAM 上和增益介质中的激 光模式大小; Δ*R*为 SESAM 的调制深度。从公式(4) 可以看出, *F*₂的值越小,稳定锁模的阈值能量越低,而 多 GHz 重复频率导致调 Q 趋势增加,调 Q 锁模会使 得入射在 SESAM 上的单脉冲能量极高,产生过强的 反饱和吸收,最终使 SESAM 的反射率大幅下降,甚至 小于连续光输出时的反射率,增加了 SESAM 的吸收 通量和热负荷,甚至造成元件损坏。因此在 SESAM 被动锁模的全固态 GHz 飞秒激光器中,为了尽量降 低锁模阈值,需要将*F*₂控制在较小的水平;同时为了 避免调Q脉冲造成的SESAM损伤,需要合理地利用 克尔透镜效应配合合理的腔型设计使腔内激光发生 自散焦效应,最终使SESAM上的激光模式随克尔效 应的增强而变大,而增益介质中的激光模式并不发生 强烈改变以保证较好的模式匹配。或者采用高亮度 高功率的多模光纤耦合的LD作为泵浦源来弥补高 重复频率下过低的单脉冲能量引起的调Q现象也是 不错的选择。

对于全固态 KLM 飞秒激光器而言,不需要额外 的启动锁模元件, KLM 是一种与光强有关的脉冲选 择机制,主要依赖于与光强和增益介质的非线性折射 率有关的克尔效应,克尔效应形成克尔透镜,使激光 腔中的光束产生自聚焦。通过引入硬孔光阑(物理光 阑)将脉冲中低功率密度部分损耗掉,使高功率密度 部分通过,并在增益介质中不断放大,使时域不断被 窄化,从而获得脉宽很窄的锁模脉冲。而在大多数 KLM 飞秒钛宝石振荡器以及 LD 泵浦的全固态振荡 器中,借助软孔光阑引入的非线性损耗调制实现 KLM 是最常用的方法。这种方法要求泵浦光斑尺寸 略小于锁模激光的光斑尺寸,但是在 GHz 飞秒激光 器中,所用共焦腔腔镜的曲率半径大多小于 50 mm, 激光束腰直径会被聚焦至 50 µm 左右。因此常用的 多模光纤耦合的 LD 作为泵浦源已不再适用,因为目 前商用的多模光纤芯径一般为100~200 µm,更重要的 是其输出激光的光束质量因子 M² 过大, 很难将其聚 焦至 50 µm 以下。

为了更好地达到软孔光阑锁模的条件,目前国际 上 GHz 全固态 KLM 飞秒激光器最常用的泵浦源是 单模光纤 (芯径约为 6 μm) 耦合的高亮度 LD。而这 又出现了另一个问题,笔者前面提到过克尔效应与增 益介质的非线性折射率以及其中的激光强度有关,而 单模光纤耦合的 LD 可得到的最大输出功率约为 1 W,极大的地限制了腔内的激光强度。同时,若忽略 腔内高阶色散, KLM 飞秒激光器中,脉冲宽度τ与单 脉冲能量*E*_p、腔内净色散*D*、非线性折射率*n*₂、增益介 质长度*d*、激光中心波长λ以及增益介质中的激光束 腰半径ω₀之间的关系可表示为^[28]:

$$\tau = 4\ln\left(1 + \sqrt{2}\right) \frac{|D|\lambda\omega_0^2}{dn_2 E_p} \tag{5}$$

在谐振腔结构和色散补偿确定的条件下,脉冲宽

度仅与单脉冲能量有关,结合公式(3),可知高重复频 率限制了短脉冲的形成。较长的脉冲结合低能量又 会使腔内的峰值功率处于较低水平,限制了腔内的克 尔效应,而这也是 GHz 全固态 KLM 飞秒激光器需要 克服的最大困难,为了尽可能地提高腔内的激光强 度,往往选用透过率很低的输出耦合镜,甚至使用高 反镜作为输出耦合镜,使得输出功率进一步受限。

尽管 LD 泵浦的 GHz 重复频率全固态飞秒激光 器存在诸多挑战,但近些年,依旧取得了非常优秀的 成果,并正在进一步将其往更高重复频率、更加实用 化的方向发展。

2 全固态 GHz 飞秒激光器的研究进展

如上所述,重复频率在1GHz以上的飞秒激光器 虽然存在诸多技术挑战,但是其本身的应用价值也不 可忽略。因此早在1990年,美国贝尔实验室的K.J. Weingarten 等人就开始了 GHz 激光器的实验研究,利 用 LD 泵浦 Nd:YLF 晶体, 通过声光调制获得了 2 GHz 的皮秒激光输出^[29],此后,通过主动锁模手段,1GHz^[30]、 2.85 GHz^[31]、5 GHz^[32]的报道不断涌现。在 SESAM 发明之后^[33],出现了大量 GHz 被动锁模 Nd:YVO4 激 光器,最高重复频率甚至达到了157 GHz^[34]。但是受 限于主动调制器件的响应时间以及掺钕 (Nd) 晶体的 增益带宽,得到的锁模脉冲宽度均在皮秒范围,使其 应用范围受限。而光学频率梳作为锁模激光器最重 要的应用之一,在精密测量领域不仅要求锁模激光具 有较窄的脉冲宽度,使得输出光谱覆盖一定的带宽范 围从而保证足够的梳齿数量:还要保证足够高的重 复频率,使得飞秒光学频率梳的梳齿间隔足够大,提 高其可分辨率,降低对波长计或者光谱仪的分辨率要 求。具有宽调谐范围的钛宝石晶体,可支持周期量 级的飞秒脉冲,在GHz重复频率飞秒激光器中取得 了很多优秀的结果[35-37],最高重复频率也提升到了 10 GHz, 脉冲宽度也短至 40 fs, 并由此产生了重复频 率 10 GHz 的飞秒光学频率梳^[38]。不可否认, 钛宝石 飞秒激光器在高重复频率、短脉冲宽度以及高输出功 率方面都有着很大优势,产生的飞秒光学频率梳具有 高稳定性和低噪声的特性,但是,昂贵且笨重的绿光 激光器作为泵浦源,不仅成本高,而且似乎与紧凑小 巧的 GHz 飞秒振荡器显得格格不入,使其在小型实

用化方面受到限制。光纤飞秒激光器无需复杂的空 间光路结构,凭借结构稳定、体积小巧的特点也被广 泛应用于光学频率梳产生,光纤光学频率梳甚至已 执行过航天任务^[39],在GHz重复频率方面也有着不 错的表现,最高重复频率也达到了19.5 GHz^[40]。但是 GHz 光纤激光器的腔长极短限制了增益光纤的长度, 使得输出功率处于较低水平;同时,光纤本身固有的 量子噪声降低了锁模脉冲的信噪比;这两方面的缺陷 对 GHz 光纤飞秒激光器的应用产生了一定限制。当 光学频率梳应用于天文多普勒视向速度测量中时[41], 由于高分辨率的天文阶梯光栅光谱仪可分辨的频率 间隔在 10~30 GHz, 因此为了匹配高分辨率天文光谱 仪分辨本领,必须提高光学频率梳的重复频率。F-P腔滤波法可以将固态光学频率梳或者光纤光学频 率梳的重复频率大幅提高,虽然存在上文提到的些许 问题,但却是有效产生数十 GHz 重复频率飞秒激光 的有效手段^[42-43]。21世纪初期, 镱离子 (Yb³⁺) 掺杂的 激光介质由于其优异的激光性质受到广泛关注[44],其 吸收峰在 940~980 nm 之间,可以利用技术成熟的 LD 直接抽运, 不仅可以弥补 GHz 飞秒光纤振荡器平 均输出功率低的缺点,而且相比钛宝石激光器而言, 成本得到大幅降低,同时具备其低噪声、短脉宽的优 点。借助 SESAM 被动锁模技术或者 KLM 技术, LD 泵浦的 GHz 重复频率全固态掺镱飞秒激光器迅速发 展,在这里,笔者主要对其近年来的研究进展进行详 细介绍。

基于 SESAM 被动锁模的全固态 GHz 飞秒激 光器

2008年,日本富士胶片公司 S. Yamazoe 等人利用 SESAM 被动锁模,率先在 LD 泵浦的 Yb:KYW 激光器中获得了重复频率 2.8 GHz 的飞秒激光输出,对应脉冲宽度为 162 fs、平均功率为 680 mW,将其封装模块化后,体积为 8 cm (长)×5 cm (宽)×3 cm (高),仅为掌上大小,图 6 为其封装模块。在 3000 h 自由运转情况下,功率抖动均方根小于 10 %,如果对激光器进行主动控制,2000 h 内功率抖动均方根仅小于 1%^[45-46]。

2010年,瑞士联邦理工学院 (ETH Zurich)U. Keller 课题组凭借其得天独厚的 SESAM 制作工艺,用锥形 分布式布拉格二极管激光器泵浦 Yb:KGW 晶体,得到 了平均功率 1.1 W、脉冲宽度 281 fs 稳定孤子运转,即

图 6 掌上大小 GHz 飞秒激光器^[45] Fig.6 Palm-top-size GHz femtosecond laser^[45]

使在1GHz的重复频率下,单脉冲能量也达到了1.1nJ, 在同样的装置下,通过进一步增加泵浦功率,观察到 了 2、3、4 GHz 的谐波锁模状态, 证明了谐波锁模在 LD 泵浦的全固态激光器 (DPSSL) 中实现多 GHz 运 转的可行性[47]。2011年,同课题组的S. Pekarek 等人继 续利用 SESAM 被动锁模,得到了重复频率1 GHz、平 均功率 2.2 W、脉冲宽度 290 fs 的 Yb:KGW 激光器^[48]。 为了进一步获得 GHz 的光学频率梳, 通过模拟和实 验,发现如果将脉冲宽度为 290 fs 的输出激光直接注 入光子晶体光纤 (PCF) 中, 由于脉冲宽度过大使孤子 分裂阶数较高,并不能获得相干性良好的超连续光 谱^[49]。因此,他们利用1m长光纤产生的自相位调制 (Self-phase Modulation, SPM) 对振荡器输出光谱进行 展宽,再配合 SP10 棱镜对进行压缩,将 290 fs 的种子 光压缩到了 100 fs, 此时注入长度为 2 m 的 PCF 中, 产生了相干良好的超过一个倍频程的超连续谱。结 合 f-2f 自参考法,首次实现了对 GHz DPSSL 载波包 络相位偏移频率 (CEO) 的探测。2012年, S. Pekarek 等人继续利用 SESAM 被动锁模, 在相似的实验装 置中,将 Yb:KGW 激光器的重复频率提升到了 2.4、 4.7、4.8 GHz, 脉冲宽度分别为 290、360、396 fs, 平均 输出功率均为瓦级^[50-51],图 7为 4.8 GHz Yb:KGW 飞 秒激光器实物图和光路示意图。由于之前的实验表 明脉冲宽度过大的飞秒脉冲无法产生相干性较好的 超连续谱,因此,2013年,A. Klenner等人通过对谐振 腔的合理设计,直接从 Yb:KGW 振荡器中获得了脉冲 宽度为 125 fs 的超短激光输出, 平均功率为 3.4 W, 重 复频率为 1.06 GHz, 峰值功率达到了 22.7 kW, 在不 经过任何压缩或者放大的情况下,将其注入长度为 1 m 的 PCF 中,结合 f-2f 自参考法,测得的 CEO 拍频 信号大于 30 dB (分辨率带宽 100 kHz), 可作为频率测 量应用中的优质光源[52]。

第12期

图 / 4.8 GHZ YD:KGW 飞忆激尤希^国

Fig.7 4.8 GHz Yb:KGW femtosecond laser^[51]

相比 Yb:KYW 和 Yb:KGW 晶体而言, Yb:CALGO 晶体具有更宽和更平坦的发射带宽^[53],可支持更短的 飞秒脉冲输出,因此也成为 GHz SESAM 被动锁模飞 秒激光器的研究热点, U. Keller 课题组 A. Klenner 等 人报道了一系列优秀的研究结果。2013年,他们实现 亚 100 fs、 重复频率 1.1 GHz、 峰值功率 38.2 kW 的飞 秒激光运转[54]。2014年,同样在 Yb:CALGO 激光器 中,利用 SESAM 被动锁模,得到了重复频率 1.8 GHz、 平均功率 2.95 W、脉冲宽度小于 60 fs 的结果^[55]。同 年,在相同的1.8 GHz 重复频率下,入射泵浦功率为 8.66 W时,将平均输出功率提升到 3.5 W, 对应的光 光转换效率和斜效率分别为40.4%和57.4%,脉冲宽 度依旧小于 60 fs^[56]。之前笔者提到不稳定调 Q 趋势 会随着重复频率的提高而增加,为了克服这个问题, 2015年, A. Klenner等人提出了一种全光Q开关限制 器以减少不稳定的调 O 对锁模的影响,同时提高锁模 功率。激光在增益介质内产生的克尔效应会使激光 发生自聚焦现象,而通过适当的腔模设计组合克尔效 应可以得到相反的结果,使克尔效应产生自散焦现象 而不是自聚焦,从而增大腔内光学元件上的激光模式 尺寸,降低了各元件上的峰值功率密度并抑制了不稳 定调Q的出现。最终依旧以Yb:CALGO为增益介 质,获得了重复频率5GHz、平均输出功率4.1W、脉 冲宽度 96 fs 的锁模结果^[27]。2017年, 在同样的指导 思想下, A. S. Mayer 等人改变了传统的飞秒谐振腔结 构,在图 8 所示的 Yb:CALGO 激光器腔内插入了一块 周期性极化铌酸锂晶体 (Periodically Poled Lithium Niobate Crystal, PPLN), 准相位匹配条件下, PPLN的 非线性折射率很强,且为负值,因此既可以使腔内激 光产生自散焦效果,也可以利用其产生负值的 SPM, 与腔内正 GDD 相互平衡,即使在腔内净 GDD 处于 +1280 fs²的情况下,依旧可以实现稳定的孤子锁模,

最终将重复频率提升到了 10.6 GHz, 平均输出功率 和脉冲宽度分别为 1.2 W和 166 fs^[57]。2020 年, L. M. Krüger 等人在上一工作基础上,详细研究了腔内色 散、泵浦亮度和腔模设计对高重复频率锁模的影 响,在腔内净 GDD 为+410 fs²时,获得了 108 fs 的最 短锁模脉宽,重复频率为 10.4 GHz, 平均输出功率 812 mW。并将其注入一块 Si₃N₄ 波导^[58]中,入射能量 仅为 48 pJ 时,即可获得覆盖一个倍频程的超连续谱, 在 100 kHz 的分辨率带宽下,探测到的 CEO 拍品信号 为 33 dB^[59]。

图 8 10.6 GHz Yb:CALGO 激光器^[57] Fig.8 10.6 GHz Yb:CALGO femtosecond laser^[57]

基于 SESAM 被动锁模的全固态 GHz 飞秒激光 器经过多年的研究, 重复频率已超过 10 GHz, 平均输 出功率也大多超过 1 W, 最短脉冲宽度小于 60 fs, 多 个报道结合 *f-2f* 自参考法实现了 CEO 的探测, 为进一 步获得全固态 GHz 飞秒光学频率梳打下坚实基础。 笔者通过表 1 对以上提到的 SESAM 被动锁模全固 态 GHz 飞秒激光器的各项参数进行总结。

表 1 SESAM 被动锁模全固态 GHz 飞秒激光器输出参数 Tab.1 Output parameters of all-solid-state GHz femtosecond lasers based on SESAM passively

mode locking

Crystal	<i>f_r</i> /GHz	τ/fs	P _{av} /W	Ref.
Yb:KYW	2.8	162	0.68	[45-46]
Yb:KGW	1	281	1.1	[47]
Yb:KGW	1	290	2.2	[48]
Yb:KGW	2.4	290	2.3	[50]
Yb:KGW	4.7	360	1.8	[50]
Yb:KGW	4.8	396	1.9	[51]
Yb:CALGO	1.1	96	4.58	[54]
Yb:CALGO	1.8	59.4	2.95	[55]
Yb:CALGO	1.8	59.96	3.5	[56]
Yb:CALGO	5	96	4.1	[27]
Yb:CALGO	10.6	166	1.2	[57]
Yb:CALGO	10.4	108	0.812	[59]

2.2 基于 KLM 的全固态 GHz 飞秒激光器

在基于 SESAM 被动锁模的全固态 GHz 飞秒激 光器快速发展的同时, KLM 全固态 GHz 飞秒激光器 也受到广泛关注。2009年,波兰华沙大学物理研究 所 P. Wasylczyk 等人利用图 3 所示的四镜环形腔结 构,以最大输出功率为 500 mW 的单模光纤耦合的 LD 泵浦 Yb:KYW 晶体,首次通过 KLM 技术获得了 重复频率大于1GHz的全固态掺镱飞秒激光器,平均 输出功率为114 mW,锁模光谱带宽为5.2 nm,对应的 变换极限脉宽约为 200 fs, 但没有自相关测量^[60]。之 后,日本东京大学固体物理研究所的 M. Endo 等人在 KLM 全固态 GHz 飞秒激光器中取得了一系列研究成 果。2012年,他们同样以Yb:KYW晶体为增益介质 得到了重复频率为 3.32 GHz 的飞秒激光输出^[61]。实 验装置如图 9 所示,同样是四镜环形腔结构,不同之 处在于耦合输出镜的透过率大小,因为在其同事在 2010年的 1.3 GHz KLM 实验中使用的耦合输出镜反 射率约为 99.6%, 计算的腔内功率约为 25 W^[62], 而对 于更高重复频率的 KLM, 不得不通过增加腔内功率 来获得足够的克尔效应,因此在 3.32 GHz 的实验中, 他们将反射率约为 99.6% 的耦合输出镜更换为高反 镜,将腔内的激光功率提高到了 50 W,最终获得了稳 定的 KLM 输出, 相应的代价则是在 750 mW 的泵浦 下,输出功率仅为13.5 mW。同年,在相似的实验装 置中,将腔内净色散控制在-250 fs²,以透过率仅为 0.03%的啁啾镜作为耦合输出镜,实现了重复频率

为 4.6 GHz 的 KLM 输出, 泵浦功率为 750 mW 时, 最 大平均输出功率为14.6 mW,锁模光谱半高全宽为 11 nm, 对应的傅里叶极限变化脉宽为 146 fs, 但未 给出自相关测量轨迹^[63]。2013年, M. Endo 等人继续 使用相同的谐振腔结构,将增益介质更换为非线性 折射率大小相当的 Yb:Lu₂O₃ (n₂ =8.6×10⁻¹⁶ cm²/W^[64], Yb:KYW 为 8.7×10⁻¹⁶ cm²/W^[65]), 通过调节端镜的位置 控制腔长,实现了重复频率为 3.7 GHz 和 5.2 GHz 的 飞秒激光输出,由于重复频率足够高,使用自制的超 高分辨率光栅光谱仪可以清晰分辨出锁模光谱的每 个纵模^[66]。之后,他们又将Yb:Lu₂O₃激光器的重复 频率提升至6GHz,由于输出功率过低,仅为10mW, 无法得到自相关信号,因此振荡器输出的脉冲被注入 一段长3m的Yb双包层光纤中进行功率放大,在3W 的泵浦功率下,放大后的平均输出功率为200mW,对 应的每个纵模功率约为 200 µW, 压缩后测得的脉冲 宽度为161 fs。借助其高重复频率的特点,成功测得 了亚稳态⁴He 原子的吸收光谱, 证明了这种高重复频 率锁模激光在梳齿分辨宽带光谱学的应用价值[67]。

当 GHz 飞秒激光器面向于天文台定标光谱仪应 用时,需求的重复频率通常为12~20 GHz^[14]。因此, M. Endo 等人为了获得重复频率超过 10 GHz 的 KLM 输出,将Yb:Lu₂O₃更换为非线性折射率更高的Yb:Y₂O₃ $(n_2 = 1.3 \times 10^{-15} \text{ cm}^2/W^{[64]})$,在同样的四镜环形腔中、继 续以透过率为0.04%的啁啾镜作为耦合输出镜,实现 稳定锁模后,在最大泵浦功率为1.1W时,得到了平 均输出功率 60 mW、重复频率 15 GHz 的 KLM 输出, 使用分辨率为 16 pm 的光谱仪即可清晰观察到每根 梳齿。紧接着将振荡器输出的 15 GHz 飞秒脉冲通过 光纤放大器进行功率放大后,输出功率为 300 mW,压 缩后测得的脉冲宽度为 152 fs。为了得到稳定的光梳 系统,使用压电陶瓷和模拟锁定电路将 15 GHz 的重 复频率锁定到了 Rb 钟参考标准上,由于极高重复频 率的飞秒振荡器很难再利用 f-2f 自参考法进行 CEO 的探测,于是将输出激光的某根梳齿与中心波长为 1079 nm 的连续光激光器进行外差拍频, 再将获得的

拍频信号锁定在173 MHz的参考频率上,从而稳定了 每个梳齿的光学频率,获得了一台稳定的15 GHz 全 固态 KLM 光学频率梳^[68]。2019年,同课题组的 S. Kimura 等人为了进一步提高重复频率,打破了使用四 镜环形腔结构获得 KLM 的传统做法,提出了一种紧 凑的线性腔结构,类似于传统环形腔的半切割模型, 实验装置如图 10 所示。其中, 增益介质依然使用 Yb:Y₂O₃陶瓷,并且其中一面镀有双色啁啾膜层,另 一面以布儒斯特角切割,同时,可以通过控制这种楔 形激光介质的通光长度控制腔内净色散量。在1W 的泵浦功率下,实现了稳定的 KLM,平均输出功率为 20 mW, 通过调节图 10(b) 中 OC 的位置实现重复频 率 18.3~23.8 GHz 的调谐, 在重复频率为 20.1 GHz 时, 得到的锁模脉冲宽度为 120 fs, 重复频率为 23.8 GHz 时,脉冲宽度为140 fs,脉冲在腔内循环一次的长度仅 为 12.5 mm^[69]。

国际上近些年在 LD 泵浦的 GHz 重复频率全固态飞秒激光器中已经实现了重复频率超过 20 GHz 的锁模运转,但国内目前除了中国科学院物理研究所的张青等人报道的绿光泵浦的 1 GHz 亚 10 fs 钛宝石振

荡器^[70]以及北京大学张志刚教授课题组和华南理工 大学杨中民教授课题组在 GHz 光纤激光器中的相关 研究^[71-72],还未见到 LD 泵浦的 GHz 重复频率全固态 飞秒激光器的相关工作,因此国内在该方面的研究 起步较晚。笔者所在课题组最近在 KLM 的 GHz 飞 秒激光器中也取得了初步研究进展,采用传统的四 镜环形腔结构,以非线性折射率较高的 Yb:KGW (2×10⁻¹⁵ cm²/W^[73])晶体为增益介质,合理补偿腔内色 散,获得了稳定的 1 GHz 飞秒激光输出,锁模特性如 图 11 所示,图 11(a)、(b) 为测量的锁模脉冲宽度和锁

图 11 锁模特性: (a) 锁模脉宽, (b) 锁模光谱, (c) 基频 RF 频谱, (d) 24 h 稳定性测试

Fig.11 Characteristics of mode-locking: (a) pulse duration of mode-locking, (b) spectrum of mode-locking, (c) RF spectrum of fundmental frequency, (d) stability test in 24 h

模光谱,锁模光谱中心波长为1045 nm,半高全宽为 4.2 nm,脉冲宽度为249 fs;图11(c)为基频频谱图,由 于所用光电探头的带宽约为350 MHz,在超出带宽 后,信号强度会迅速下降,因此未测量对应的谐波频 谱,但即使如此,测得的基频信号信噪比也大于60 dB; 在泵浦功率为830 mW时,平均输出功率约为150 mW, 图11(d)为实验室环境下自由运转的功率曲线,24 h 功率抖动均方根 (RMS) 仅为0.76%,前6h中的几次 功率突然降低可能是因为实验室温度变化以及空气 抖动使激光脱离稳定锁模状态,但是均可以在短时间 内实现自启动锁模,并继续保持十几小时的稳定运 转,如果对整个实验装置进行封装处理,相信其稳定 性将会进一步提高。

到目前为止,基于 KLM 的全固态 GHz 飞秒激光 器由于锁模条件的严苛要求,大多只能采用光束质量 较好的单模光纤耦合的高亮度 LD 做为泵浦源,虽然 极大地限制了输出功率,但是重复频率已经提升至 20 GHz 以上,对应用于精密光谱学、高速数据通信等 其他领域意义重大。在这里,通过表 2 对以上提到的 KLM 全固态 GHz 飞秒激光器进行总结。

表 2 KLM 全固态 GHz 飞秒激光器输出参数

Tab.2 Output parameters of KLM all-salid-state femtosecond lasers

Crystal	<i>f</i> _r /GHz	τ/fs	P _{av} /mW	Ref.
Yb:KYW	1	*200	114	[60]
Yb:KYW	3.32	*150	13.5	[<mark>61</mark>]
Yb:KYW	4.6	*146	14.6	[63]
Yb: Lu ₂ O ₃	3.7	—	—	[<mark>66</mark>]
Yb: Lu ₂ O ₃	5.2	165	—	[<mark>66</mark>]
Yb: Lu ₂ O ₃	6	161	10	[67]
Yb:Y ₂ O ₃	15	152	60	[68]
Yb:Y ₂ O ₃	23.8	140	20	[<mark>69</mark>]
Yb:KGW	1.1	249	150	Our work

*表示由锁模光谱计算的傅里叶极限变换脉宽,没有自相关曲线

3 结束语

无论是 KLM 钛宝石飞秒激光器, 亦或是光纤飞 秒激光器和 LD 泵浦的全固态飞秒激光器, 在 GHz 重 复频率运转方面都已经取得了突破性的研究进展, 特 别是 LD 泵浦的全固态掺镱飞秒激光器, 近年来迅速 发展。基于 SESAM 的被动锁模已实现了 10 GHz、 ~100 fs 的高功率运转,并且成功测量 CEO 信号;基 于 KLM 技术也已成功获得了重复频率超过 20 GHz 的飞秒激光输出。利用这些极高重复频率的飞秒光 源产生的飞秒光学频率梳极大地推动了精密光谱学 的发展,并且在天文摄谱仪的校准中,需要脉冲重复 频率处于 5~50 GHz 的范围,才能使用光栅分辨出每 个纵模,使得对系外行星的探索成为可能^[74];而诸如 如今炙手可热的 5G 技术等新一代电子设备技术要求 重复频率在 20 GHz 以上的钟用于高速数据通信和 采集^[75]。

然而想要获得兼顾更高重复频率以及更高输出 功率的飞秒激光,也存在一些亟需解决的问题。 SESAM被动锁模的全固态 GHz 激光器虽然可以实 现瓦级的平均功率,脉冲宽度也可以保持在 100 fs 以 内,但是如图 8 所示,10 GHz 的重复频率对应的谐振 腔已经如此紧凑,想要进一步提升重复频率,高功率 泵浦下的晶体散热模块设计、腔内色散补偿元件以及 用于启动锁模的 SESAM 所需要的空间布局都面临着 巨大的挑战,更重要的是需要依靠 SESAM 制作工艺 的快速发展。而目前 KLM 全固态 GHz 飞秒激光器 虽然已经实现了更高的重复频率,但由于锁模条件的 苛刻要求,限制了可用的泵浦源,不仅限制了 GHz 全 固态 KLM 飞秒激光器的输出功率,也使其输出脉宽 受限。因此在后续应用中往往需要额外的放大系统, 最终又会引入多余的噪声。

综上所述,如果有某种方案能利用 KLM 技术实 现数 GHz 甚至数十 GHz 重复频率的飞秒激光运转, 并兼顾高平均功率输出将会非常有趣。GHz 全固态 KLM 飞秒激光器除了需要满足传统 KLM 激光器要 求的软孔锁模条件外,实现锁模的另一挑战则是高重 复频率带来的腔内低峰值功率,使得无法产生足够的 克尔效应。因此针对这两个问题,参考近几年在 LD 泵浦的块状 Yb 晶体中通过增益介质与克尔介质分离 的方案,借助腔内插入的克尔介质提供足够的克尔效 应,并在增益介质中使激光模式与泵浦光满足软孔锁 模条件,最终即使在低亮度且光束质量很差的 LD 作 为抽运源时,也可以实现的高功率窄脉宽飞秒激光输 出^[76-77]。或许在 GHz 重复频率下也可以借助这种思 想:一方面,以额外的克尔介质弥补腔内不足的克尔 效应;另一方面,以高功率多模LD作为泵浦源时,必 然使泵浦光的聚焦光斑扩大,为了使GHz谐振腔内 激光晶体中的激光模式与泵浦光模式良好匹配形成 软孔光阑,需要对谐振腔结构进行合理设计,略微扩 大激光模式。最终,在高功率多模LD的抽运下,获 得多GHz高功率KLM飞秒激光运转。当然,随着光 束质量优异的高亮度高功率LD的研制开发以及超 快激光技术的进一步发展,或许不用更多复杂的方 案,全固态GHz飞秒激光器也会获得更高重复频率、 更高输出功率以及更短脉冲宽度的结果,笔者所在课 题组也将在现有的研究基础上开拓创新,在更高重复 频率KLM飞秒激光器以及多模LD泵浦的新型 GHz高功率KLM全固态飞秒激光器的研制方面深入 探索。相信GHz飞秒激光将在超快激光领域甚至各 行各业中发挥更大作用,未来可期。

参考文献:

- Javan A, Bennett W R, Herriott D R. Population inversion and continuous optical maser oscillation in a gas discharge containing a he-ne mixture [J]. *Phys Rev Lett*, 1961, 6: 106-110.
- [2] Javan A, Ballik E A, Bond W L, et al. Frequency Characteristics of a Continuous-Wave He–Ne Optical Maser [J]. *J Opt Soc Am*, 1962, 52: 96-98.
- [3] Mocker H W, Collins R J. Mode competition and self-locking effects in Q-switched ruby laser [J]. *Appl Phy Lett*, 1965, 7: 270-273.
- [4] Fork R L, Greene B I, Shank C V, et al. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J]. *Appl Phy Lett*, 1981, 38: 671-672.
- [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. *Opt Commun*, 1985, 55: 447-449.
- [6] Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses [J]. Opt Lett, 1999, 24: 160-162.
- [7] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. *Science*, 2000, 288: 635-639.
- [8] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum [J]. *Science*, 2020, 369(6501): eaay3676.
- [9] Diddams S A, Udem T, Bergquist J C, et al. An optical clock based on a single trapped ¹⁹⁹Hg⁺ ion [J]. *Science*, 2001, 293: 825-828.
- [10] Diddams S A, Hollberg L, Mbele V. Molecular fingerprin-

ting with the resolved modes of a femtosecond laser frequency comb [J]. *Nature*, 2007, 445: 627-30.

- [11] Stowe M C, Thorpe M J, Avi P, et al. Direct frequency comb spectroscopy [J]. *Adv At Mol Opt Phys*, 2008, 55: 1-60.
- [12] Cundiff S T, Weiner A M. Optical arbitrary waveform generation [J]. *Nat Photonics*, 2010, 4: 760-766.
- [13] Bartels A, Diddams S A, Oates C W, et al. Femtosecond-laserbased synthesis of ultrastable microwave signals from optical frequency references [J]. *Opt. Lett.*, 2005, 30: 667-669.
- [14] Wilken T, Curto G L, Probst R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level [J]. *Nature*, 2012, 485: 611-614.
- [15] Sizer T. Increase in laser repetition rate by spectral selection [J].
 IEEE J Quantum Elect, 1989, 25: 97-103.
- [16] Herr S, Steinmetz T, Wilken T, et al. Optical mode structure of a harmonically mode-locked Yb femtosecond fiber laser[C]// CLEO: 2011-Laser Science to Photonic Applications. IEEE, 2011: 1-2.
- [17] Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers [J]. *IEEE J Sel Top Quant*, 1996, 2: 435-453.
- [18] Spence D E, Kean P N, Sibbett W, et al. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser [J]. *Opt Lett*, 1991, 16: 42-44.
- [19] Grudinin A B, Gray S. Passive harmonic mode locking in soliton fiber lasers [J]. J Opt Soc Am B, 1997, 14: 144-154.
- [20] Yang H W, Kim C, Choi S Y, et al. 1.2-GHz repetition rate, diode-pumped femtosecond Yb: KYW laser mode-locked by a carbon nanotube saturable absorber mirror [J]. *Opt Express*, 2012, 20: 29518-29523.
- [21] https://yohei.issp.utokyo.ac.jp/worksGHzLaser.html
- [22] Ramaswamy-Paye M, Fujimoto J G. Compact dispersioncompensating geometry for Kerr-lens mode-locked femtosecond lasers [J]. *Opt Lett*, 1994, 19: 1756-1758.
- [23] Kärtner F X, Matuschek N, Schibli T, et al. Design and fabrication of double-chirped mirrors [J]. *Opt Lett*, 1997, 22: 831-833.
- [24] Hönninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking [J]. J Opt Soc Am B, 1999, 16: 46-56.
- [25] Paschotta R, Krainer L, Lecomte S, et al. Picosecond pulse sources with multi-GHz repetition rates and high output power [J]. *New J Phys*, 2004, 6(1): 174.
- [26] Grange R, Haiml M, Paschotta R, et al. New regime of inverse

saturable absorption for self-stabilizing passively mode-locked lasers [J]. *Appl Phys B*, 2005, 80: 151-158.

- [27] Klenner A, Keller U. All-optical Q-switching limiter for highpower gigahertz modelocked diode-pumped solid-state lasers [J]. *Opt Express*, 2015, 23: 8532-8544.
- [28] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications[M]. Switzerland: Springer Science & Business Media, 2005.
- [29] Weingarten K J, Shannon D C, Wallace R W, et al. Twogigahertz repetition-rate, diode-pumped, mode-locked Nd: YLF laser [J]. *Opt Lett*, 1990, 15: 962-964.
- [30] Zhou F, Malcolm G P A, Ferguson A I. 1-GHz repetitionrate frequency-modulation mode-locked neodymium lasers at 1.3 μm [J]. Opt Lett, 1991, 16: 1101-1103.
- [31] Weingarten K J, Godil A A, Gifford M. FM mode-locking at 2.85 GHz using a microwave resonant optical modulator [J]. *IEEE Photonics Tech Lett*, 1992, 4: 1106-1109.
- [32] Schulz P A, Henion S R. 5-GHz mode locking of a Nd: YLF laser [J]. Opt Lett, 1991, 16: 1502-1504.
- [33] Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: An antiresonant semiconductor Fabry–Perot saturable absorber [J]. *Opt Lett*, 1992, 17: 505-507.
- [34] Krainer L, Paschotta R, Lecomte S, et al. Compact Nd: YVO₄ lasers with pulse repetition rates up to 160 GHz [J]. *IEEE J Quantum Elect*, 2002, 38: 1331-1338.
- [35] Bartels A, Dekorsy T, Kurz H. Femtosecond Ti: sapphire ring laser with a 2-GHz repetition rate and its application in timeresolved spectroscopy [J]. *Opt Lett*, 1999, 24: 996-998.
- [36] Fortier T M, Bartels A, Diddams S A. Octave-spanning Ti: sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons [J]. *Opt Lett*, 2006, 31: 1011-1013.
- [37] Bartels A, Gebs R, Kirchner M S, et al. Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser [J]. *Opt Lett*, 2007, 32: 2553-2555.
- [38] Bartels A, Heinecke D, Diddams S A. 10-GHz self-referenced optical frequency comb [J]. *Science*, 2009, 326: 681-681.
- [39] Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology [J]. *Optica*, 2016, 3: 1381-1387.
- [40] Martinez A, Yamashita S. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes [J]. *Opt Express*, 2011, 19(7): 6155-6163.
- [41] Murphy M T, Udem T, Holzwarth R, et al. High-precision wavelength calibration of astronomical spectrographs with laser

frequency combs [J]. Mon Not R Astron Soc, 2007: 380.

- [42] Li C H, Benedick A J, Fendel P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s⁻¹ [J]. *Nature*, 2008, 452: 610-612.
- [43] Steinmetz T, Wilken T, et al. Laser frequency combs for astronomical observations [J]. *Science*, 2008, 321: 1335.
- [44] Zhu Jiangfeng, Tian Wenlong, Gao Ziye, et al. Diode pumped all-solid-state femtosecond Yb laser oscillator [J]. *Chinese Journal Lasers*, 2017, 44(9): 0900001. (in Chinese) 朱江峰,田文龙,高子叶,等. 二极管抽运全固态飞秒Yb激光 振荡器[J]. 中国激光, 2017, 44(9): 0900001.
- [45] Yamazoe S, Katou M, Kasamatsu T. Ultra-compact Laser-diodepumped Femtosecond Solid-state Laser[Z/OL]. [2020-06-16] https://www.fujifilm.com/about/research/report/054/pdf/index/ff_ rd054_009_en.pdf.
- [46] Yamazoe S, Katou M, Adachi T, et al. Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb³⁺: KY (WO₄)₂ solid-state laser with a semiconductor saturable absorber mirror [J]. *Opt Lett*, 2010, 35: 748-750.
- [47] Pekarek S, Fiebig C, Stumpf M C, et al. Diode-pumped gigahertz femtosecond Yb: KGW laser with a peak power of 3.9 kW [J]. *Opt Express*, 2010, 18: 16320-16326.
- [48] Pekarek S, Südmeyer T, Lecomte S, et al. Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser [J]. *Opt Express*, 2011, 19: 16491-16497.
- [49] Genty G, Coen S, Dudley J M. Fiber supercontinuum sources [J]. J Opt Soc Am B, 2007, 24: 1771-1785.
- [50] Pekarek S, Stumpf M C, Lecomte S, et al. Compact gigahertz frequency comb generation: how short do the pulses need to be?[C]//ASSP Optical Society of America, 2012: AT5A. 2.
- [51] Pekarek S, Klenner A, Südmeyer T, et al. Femtosecond diodepumped solid-state laser with a repetition rate of 4.8 GHz [J]. *Opt Express*, 2012, 20: 4248-4253.
- [52] Klenner A, Golling M, Keller U. A gigahertz multimode-diodepumped Yb: KGW enables a strong frequency comb offset beat signal [J]. *Opt Express*, 2013, 21: 10351-10357.
- [53] Petit J, Goldner P, Viana B. Laser emission with low quantum defect in Yb: CaGdAlO₄ [J]. *Opt Lett*, 2005, 30: 1345-1347.
- [54] Klenner A, Golling M, Keller U. Compact gigahertz frequency combs[C]//ASSL Optical Society of America, 2013: ATh3A. 1.
- [55] Klenner A, Golling M, Keller U. High peak power gigahertz Yb: CALGO laser [J]. *Opt Express*, 2014, 22: 11884-11891.
- [56] Klenner A, Golling M, Keller U. Gigahertz diode-pumped Yb: CALGO laser with 60-fs pulses and an average output power of 3.5 W [C]//CLEO-Laser Science to Photonic Applications.

IEEE, 2014: 1-2.

- [57] Mayer A S, Phillips C R, Keller U. Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal [J]. *Nat Commun*, 2017, 8: 1-8.
- [58] Waldburger D, Mayer A S, Alfieri C G E, et al. Tightly locked optical frequency comb from a semiconductor disk laser [J]. *Opt Express*, 2019, 27: 1786-1797.
- [59] Krüger L M, Mayer A S, Okawachi Y, et al. Performance scaling of a 10-GHz solid-state laser enabling self-referenced CEO frequency detection without amplification [J]. Opt Express, 2020, 28: 12755-12770.
- [60] Wasylczyk P, Wnuk P, Radzewicz C. Passively modelocked, diode-pumped Yb: KYW femtosecond oscillator with 1 GHz repetition rate [J]. *Opt Express*, 2009, 17: 5630-5636.
- [61] Endo M, Ozawa A, Kobayashi Y. Kerr-lens mode-locked Yb: KYW laser at 3.3-GHz repetition rate[C]//CLEO Optical Society of America, 2012: CF3L. 2.
- [62] Kobayashi Y, Nomura Y, Watanabe S. 1.3-GHz, 20-W, femtosecond chirped-pulse amplifier system[C]//CLEO Optical Society of America, 2010: CMN3.
- [63] Endo M, Ozawa A, Kobayashi Y. Kerr-lens mode-locked Yb: KYW laser at 4.6-GHz repetition rate [J]. *Opt Express*, 2012, 20: 12181-12197.
- [64] Senatsky Y, Shirakawa A, Sato Y, et al. Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver [J]. *Laser Phys Lett*, 2004, 1: 500-506.
- [65] Yumashev K V, Posnov N N, Prokoshin P V, et al. Z-scan measurements of nonlinear refraction and Kerr-lens modelocking with Yb³⁺: KY(WO₄)₂ [J]. *Opt Quant Electron*, 2000, 32: 43-48.
- [66] Endo M, Ozawa A, Sukegawa T, et al. 5.2-GHz, Kerr-lens mode-locked Yb: Lu₂O₃ ceramic laser for comb-resolved broadband spectroscopy. [C]//CLEO OSA Technical Digest (online), 2013: CTu1I. 3.
- [67] Endo M, Ozawa A, Kobayashi Y. 6-GHz, Kerr-lens modelocked Yb: Lu₂O₃ ceramic laser for comb-resolved broadband

spectroscopy [J]. Opt Lett, 2013, 38: 4502-4505.

- [68] Endo M, Ito I, Kobayashi Y. Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb: Y₂O₃ ceramic laser [J]. *Opt Express*, 2015, 23: 1276-1282.
- [69] Kimura S, Tani S, Kobayashi Y. Kerr-lens mode locking above a 20 GHz repetition rate [J]. *Optica*, 2019, 6: 532-533.
- [70] Qing Z, Yanying Z, Zhiyi W. Sub-10 fs laser pulses with repetition rate of 1.1 GHz by a Ti: sapphire oscillator [J]. *Chinese Sci Bull*, 2009, 20: 3649-3652.
- [71] Li Chen, Ma Yuxuan, Gao Xiang, et al. 1 GHz repetition rate femtosecond Yb: fiber laser for direct generation of carrierenvelope offset frequency [J]. *Appl Optics*, 2015, 54(28): 8350-8353.
- [72] Wang Wenlong, Lin Wei, Cheng Huihui, et al. Gain-guided soliton: Scaling repetition rate of passively modelocked Ybdoped fiber lasers to 12.5 GHz [J]. *Opt Express*, 2019, 27(8): 10438-10448.
- [73] Major A, Nikolakakos I, Aitchison J S, et al. Characterization of the nonlinear refractive index of the laser crystal Yb: KGd(WO₄)₂ [J]. *Appl Phys B*, 2003, 77(4): 433-436.
- [74] McCracken R A, Charsley J M, Reid D T. A decade of astrocombs: recent advances in frequency combs for astronomy [J]. *Opt Express*, 2017, 25: 15058-15078.
- [75] InternationalTelecommunicationUnion.2015-09-12.IMTVision— Framework and overall objectives of the future development of IMT for 2020 and beyond. ITU-R, M2083-0[EB/OL]. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
- [76] Tomohiro I, Eilanlou A A, Yasuo N, et al. Kerr lens modelocked Yb: Lu₂O₃ bulk ceramic oscillator pumped by a multimode laser diode [J]. *Jpn J Appl Phys.*, 2015, 54: 072703.
- [77] Tian W L, Yu C, Zhu J F, Zhang D C, et al. Diode-pumped highpower sub-100 fs Kerr-lens mode-locked Yb: CaYAlO₄ laser with 1.85 MW peak power [J]. *Opt Express*, 2019, 27: 21448-21454.