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Classification of coal/rock based on Hyperspectral

LiDAR calibration-free signals

He Zixin, Shao Hui’, Guo Hang, Chen Jie
(School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract: Safety is essential to deep mining operations. To monitor and detect the safety condition of
surrounding rock of roadway and deep coal mining site, many methods obtain competitive results by monitoring
targets situation based on laser scanning spacial information. The Hyperspectral LIDAR (HSL) technology can
acquire spacial and spectral data for deep mine safety detection and further fine structure analysis. The exact
coal/rock classification is the basis of detection and analysis. While, in on-site operation, HSL signals are
susceptible to instrument attributes and environmental factors, and need calibration for further classification
application. However, due to serious dust pollution in deep coal mines, conventional calibrations are hard to
achieve the desired results. To address this issue, a new method was proposed to classify coal/rock without
calibration. First, the new feature values, waveform entropy (WE) and joint skewness-kurtosis figure (JSKF),
were extracted from coal/rock samples based on HSL measurements. Then, the coal/rock classification tests were
conducted with random forest (RF) and support vector machine (SVM) classifiers. Additionally, the spectral
properties of different wavebands were evaluated by spectral segmentation test and the classification
performances were optimized further by selecting specific channels. The results show that the proposed method
can achieve excellent classification accuracy for coal/rock without calibration.
Key words: Hyperspectral LIDAR;  classification;  calibration;  waveform entropy;

joint skewness-kurtosis figure
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0 Introduction

Coal is an important energy in the world and it plays
an important role in the development of the economy.
Although a lot of new energy sources are applied in
production and living, it will still occupy the dominant

position for a long time''.

As the demand for coal
increases and surface resources decrease, deep mines are
concerned and carried out. However, disasters caused by
deep mining threaten safety operation seriously. Many
methods had been implemented to ensure the operation
safety, such as safety pre-evaluation™, regional pre-
diction”, rock mass classification”! and so on. Whereas,
traditional geological monitoring methods usually require
extensive field work, which is time-consuming and labor-
intensive. At present, remote sensing has become one of
the most effective tools for monitoring the condition of
underground spaces. Rock classification based on light
detection and ranging (LiDAR) technology attracted wide
attention due to its high classification accuracy and good
recognition precision!.

LiDAR is an effective remote sensing technique that
it can not only assess stability of rock conditions
accurately, but also collect surface geometry
information of rock and distinguish different rock
properties by acquiring 3D point cloud data!”. Whereas,
traditional LiDAR sensors operate at single or several
wavelengths that can only obtain limited

which

spectral

information, restrict the performance of
application®. With development of remote sensing, the
emergence of hyperspectral LiDAR (HSL), fusion of
hyperspectral data and LiDAR, significantly enhanced the
quantitative and qualitative analysis capabilities of

LiDAR, which has been widely used in atmospheric

FFRAC . ZERR, TR0 AT ik,
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detection, forest protection and artificial target
detection® "1,

However, the performance of HSL depends on the
quality of intensity signal received by LiDAR receiver.
Many aspects impact the accuracy of LiDAR intensity
instrument

signals in on-site applications, such as,

properties!'* and environmental factors'"”!. The common
solution is to calibrate the intensity signal to eliminate
data deviation. In 2007, Hoefle et al. calibrated the
intensity signal using data-driven and model-driven
correction, which provided support for surface
classification and multi-temporal analysis!'®. In 2011,
Kaasalainen et al. studied the effect of range and
incidence angle on intensity signals, conducted instrument
calibration and target surface features calibration
researches!'. In the same year, Yan et al. evaluated the
influence of geometric calibration and radiometric
calibration of LiDAR signal on land surface classification,
improved the accuracy of LiDAR data by eliminating
parameter deviations and correcting the scanning angle!'”.
Most calibration methods need a whiteboard with a
calculated reflectance as reference to correct LiDAR
signals. While the environment of signal collection site is
seriously polluted and the reference whiteboard is easily
covered by dust, which leads to inaccurate calculations
and is hard to ensure the accuracy of calibration.

To address this issue, we propose a new method to
classify coal/rock samples without calibration. The
instrument we employed is previously proposed an HSL
based on acousto-optic tunable filter (AOTF)"®, which
offers a quicker tuning speed and broader wavelength
ranges. First, waveform entropy (WE) and joint skewness-

kurtosis figure (JSKF) are calculated based on HSL
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intensity signals, as new extracted features. Then,
coal/rock samples are classified with WE and JSKF by
random forest (RF) and support vector machine (SVM)
classifiers and the classification results are compared with
the intensity signals. Finally, with spectral segmentation
test, the classification performances are optimized by
selecting the fewer channels and compared results with

calibrated intensity signal.
1 Materials and methods

1.1 Instrument and measurements
1.1.1 AOTF-HSL

The instrument we employed is the previously
designed AOTF-HSL with a spectral 5 nm resolution,
using a supercontinuum laser source (YSL® SC-OEM)"*,
as Fig.l1 shown. A computer triggers laser source to
transmit supercontinuum laser pulses and filtered by the
AOTF device to select specific wavelength. The
specifications of AOTF module can be found in Tab.l1.
With beam expander, the laser pulses are collimated to
transmit to the target. The echo signals are collected by

the optical receiving module and focused them on

Supercontinuum

Computer
laser source

AOTF
Receiving
optics Reﬂector\\\ ‘

Fig.l Schematic diagram of HSL

IA/D converter

\

APD Beam

expander

Tab.1 Specification of AOTF-HSL

Parameter Value
Spectral range/nm 650-1100
Spectral resolution/nm 5
Output efficiency >40%

Polarization Line polarization

Beam divergence/mrad 0.4

avalanche photodiode (APD) model, which converts the
laser echo signals into electronic signals and amplifies
them. The output signals of APD are sampled and
converted to digital signals by a high-speed A/D converter
and transmitted to computer for data processing.

1.1.2 Hyperspectral measurement

The measurements were conducted in a controlled
laboratory  environment to obtain  hyperspectral
information through AOTF-HSL. Due to the low
sensitivity of APD and the low transmitted power
intensity of supercontinuum lasers below 650 nm!", the
measurement of the spectrum channels was selected in the
range of 650 nm to 1100 nm. The waveforms of pulses
reflected from coal/rock samples were collected by an
oscilloscope sampling at 20 GHz.

Besides coal and gangue-rock, we also added rock
from roof layer and rock from floor layer as samples,
which come from deep mines'™. All samples were
scanned at the same distance from the instrument that
range differences between samples can be neglectable.

1.2 Traditional calibration method

The precision of the intensity calibration of HSL
system is a prerequisite for many quantitative
applications, and it has become an important research
object!". The equation (1) describes parameters related to
the signal received by the LiDAR sensor:

P.D?

P = 1
anrg” M

Where, P, is the power receiver, P, is the transmitted
power, D, is the receiver optical aperture diameter, R is
the distance, S, denotes transmitter beam width, and o is
the backscatter cross section.

The backscatter cross section can be expressed
equation (2):

4
= —pA 2

Where, Q is a cone of a solid angle into which the
incoming radiation is scattered uniformly, p is the surface
reflectance, and 4g denotes the scattering receiving area.

The equations indicate that the accuracy of intensity
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signals not only depends on distance, scattering cross-
section, and atmospheric parameters, but also relates to
reflectance of targets and directionality of the incident
angle!"”l. Therefore, it is necessary to calibrate intensity
signals. An efficient calibration method is to set a
whiteboard with a constant reflectance for correction!'®),
Whereas, in deep coal mines, the conventional calibration
method is hard to valid because of dust pollution.

1.3 New features extraction methods

1.3.1 Waveform entropy

The entropy concept is introduced to measure
uncertainty of random variables®”. A metric of the
dispersion degree of echo signals with respect to their
variables is selected as a new feature, namely waveform
entropy.

While the different target is present, the entropy
value corresponds different, further, WE parameter of the
same target is different under different spectral laser
scanning™. Therefore, we can distinguish different type
sequences based on WE, which is vary with scatter
distribution, wavelength and other features' .

In order to adopt the concept of entropy, we suppose
digital echo signals as X/= x/(i), i= n,,N, t=1,"-4,
Jj=1,---m. i denotes the echo signal from initial point to the
ending point, ¢ is the different type of coal sample, and j is

the number of channels, setting,

X;= ") 3)
(i)
PG0) = u @)

(x;)

Where, p/(i) is an energy distribution of the vector at

individual components, WE is defined as,
N
Ej(0) == p\Hnp}() (5)

Evidently, WE is closely related with amplitude, and
vary with signal amplitude fluctuation. The more uniform
probability p//(i) is, the larger WE value is. Consequently,
WE of a digital waveform depends on the waveform

itself, we will apply the distinguished values as feature to

classify the different coal samples.
1.3.2 Features based on echo waveform energy
Digital waveform provides more specific information
potentially which easily available for operation*”.
Statistical variables of waveform energy were extracted
from LiDAR echo signal waveform, which has been
widely applied in the discriminated classes of coastal
habitats and species™™!, forest species™™. In 2011, Guo et
al.” proposed a JSKF model by combining skewness and
kurtosis for band selection and achieved good results. We
employ JSKF as a new feature to classify coal/rock.
Skewness is a characteristic number that char-
acterizes the degree of asymmetry of the probability
distribution density curve relative to the average, which is
expressed by the third-order standardized moments. The
equation is:
E[X-pl’

§ ==

(6)

Where, E(X) is the expectation of vector X, u is the
mean value of vector X, and ¢ is the standard deviation of
vector X. The larger the skewness, the more asymmetrical
the distribution of random variables.

Kurtosis is a characteristic number that characterizes
the peak of the probability density distribution curve at
average value, which is expressed by the ratio of the
fourth-order central moment of the random variable to the
square of the variance. Kurtosis reflects the sharpness of
the peak of the probability density distribution curve. The
larger the kurtosis value, the sharper the probability
density distribution curve. The equation is:

_ ElX-p)’
T

K 3 (7)

Skewness and kurtosis represent the asymmetry of
random distribution, which could not only measure the
difference  between  different bands of target
characteristics, but also evaluate non-Gaussianity of data
samples. JSKF uses the product of skewness and kurtosis
as an indicator to measure the amount of information
deviating from the normal distribution of the size. It is

defined as

202005184
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Fiskr =S - K (3 also increase at the same time. Complex large-scale
That is: instruments and huge data volumes are hard for on-site
1 operation and data processing. Therefore, we hope that a
Fisr = — |EX =)' =30 - EX =) (9)

It is obvious that JSKF is related to the expectation
of the waveform. The expectation is related to mean and
standard deviation. The mean and standard deviation
depend on the waveform itself. Therefore, the JSKF of the
digital waveform also depends on the waveform itself that
has no relation to external conditions. We employ the
waveform of JSKF as another feature to classify different
coal and rock samples in the next section.

1.3.3 Classification methods

In order to explore coal/rock classification based on
AOTF-HSL, RF and SVM are employed as classifiers in
our experiments. The main advantage of RF is only a few
parameters and manual intervention needed to require
high stability””, which is usually applied for remote
sensing image analysis®™. SVM can provide high
classification accuracy and it has become a very popular
kernel-based classification algorithm in hyperspectral
image classification™. Both of them have been widely
applied in remote sensing researches and their efficiencies
have proven in remote sensing data classification".
Multi-label classification is implemented by the scikit-

learn Python package®"!.
2 Experiments and results

2.1 Experimental method
2.1.1 Full channel classification

The experiments were conducted under a controlled
laboratory environment. We employed HSL of 91
channels to collect different coal/rock sample data and
calculated WE and JSKF based on echo signals. Then,
intensity signals, WE, JSKF, and calibrated intensity
signals were classified by RF and SVM classifiers to
observe the performance.
2.1.2 Channel selection classification

With the number of channels in HSL increases, the

instrument complexity and the amount of collected data

miniaturization HSL with less channels can also achieve
accurate classification results. In order to simplify
equipment complexity to save equipment resources and
improve efficiency, we have improved the experiment:
select a part of channels from 91 channels for classi-
fication by random selection method and test accuracy.
The number of channels increases from 1 in turn until the
precision reaches 100%. We evaluate the consequences by
comparing the number of channels required.
2.1.3 Performance comparison and spectral segmen-
tation test

To further compare the capacity of WE, JSKF and
calibrated intensity signals, we attempt to randomly
extract 5 channels from 91 channels and assess the
property of them respectively. At the same time, our
previous research confirmed that the data of different
bands have different properties®”, so we conduct a
spectral segmentation test based on WE and JSKF to find
the optimal band for classification.
2.2 Experiment results and analysis
2.2.1 Full channel classification results

The classification results of all channels are shown in
the Tab.2. The accuracy of all features can reach 100% by
using the full channels spectral information. The results
prove that with sufficient spectral information, the

classification of coal and rock can achieve ideal results.

Tab.2 Full channels classification accuracy

RF SVM
Data
Accuracy Accuracy
Intensity 100% 100%
WE 100% 100%
JSKF 100% 100%
Calibrated 100% 100%

2.2.2 Channel selection classification results
With sufficient experiment tests, the channels of

random selected classification results are shown in the

20200518-5
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Tab.3. For the RF classifier, while accuracy reaches
100%, the least number of channels needed for intensity
signal is 21, which is maximum compared with others.
WE needs 15 channels, the channels of JSKF and
calibrated intensity signal are both 6. Compared with the
intensity signal, WE, JSKF and calibrated intensity signal
reduce 6, 15, 15 channels respectively. For the SVM
classifier, when accuracy reaches 100%, the intensity
signal needs 20 channels at least. WE needs 15 channels,
JSKF needs 6 channels, and the calibrated intensity signal
needs 4 channels. Compared with the intensity signal,
WE, JSKF and calibrated intensity signal reduce 5, 14, 16
channels respectively. With comparison, we can draw a
conclusion: the four groups of data can still achieve the
desired performances by using fewer spectrum channels.
Meanwhile, the number of channels needed for WE and
JSKF classification is significantly less than that of
intensity signal. Although WE and JSKF do not achieve
the classification ability as same as calibrated intensity
signal, they can provide enhancement of classification
effect significantly than the intensity signal, which
indicate that the HSL intensity signal calibration-free

method we proposed is feasible for improving the

Tab.3 Minimum number of random channels

RF SVM
Data
Number of channels Number of channels
Intensity 21 20
WE 15 15
JSKF 6 6
Calibrated 6 4

Four types of waveform entropy distribution
— Coal i i
— Floor N
Proof
— Rock

Entropy

'_interval |

A L AN N 0 O

850 950
800 900
Wavelength/nm

(a) WE

750
700

650 1050
1 000

1100

JSKF

classification performance.
2.2.3 Performance comparison and spectral segmen-
tation test results
5-channel random extraction classification results are
shown in Tab.4. The accuracies are calculated by

averaging multiple experiments.

Tab.4 S-channel classification accuracy

RF SVM
Data
Accuracy Accuracy
WE 88% 90%
JSKF 96% 100%
Calibrated 98% 100%

From the results, we can see that with 5 channels, the
accuracy of calibrated intensity signal and JSKF is 98%
and 96% respectively by RF, and they are both 100% by
SVM. For WE, although more channels are needed to
achieve accurate classification, the precision still reaches
90% by extracting 5 channels randomly. The reason is
that the 91-channel HSL covers a wide spectrum that
different spectral bands have different classification
Therefore, we conduct a

propertiest?. spectrum

segmentation test to find the optimal interval of
classification.

Figure 2 show the waveform distribution diagram of
WE and JSKF.

We can see that WE and JSKF present different
properties in different bands. For WE, the entropy
changes 650-1000 nm

significantly at 1000-1100 nm in Fig.2(a). JSKF is used

slowly at and increases

300 - IFour typels of JSKF distribution
250 ¢ Ideal
200 | : interval :
150 E E — Coal
; — Floor
100 t ! Proof
' T — Rock
50 — . . . .
650 750 850 950 1 050
700 800 900 1 000 1100
Wavelength/nm
(b) JSKF

Fig.2 (a) Waveform distribution diagram of WE; (b) Waveform distribution diagram of JSKF
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as an indicator to measure the amount of information that
deviates from the normal distribution. The data are
approximately at the lowest value between 720 nm and
820 nm in Fig.2(b). That means, the data deviation is
relatively low; and when it reaches the maximum at 1 000-
1100 nm, the data deviation is relatively high. Thus, we
test the 720-820 nm band and the 1000-1100 nm band
respectively and compared them with the calibrated
intensity signal. There are 20 channels in each band. The

results are shown in Tab.5 and Tab.6.

Tab.5 720-820 nm classification results

RF SVM
Classifier
Channels Accuracy Channels Accuracy
WE 20 95.02% 20 95.34%
JSKF 3 100% 4 100%
Calibrated 2 100% 3 100%

Tab.6 1000-1100 nm classification results

RF SVM
Classifier
Channels Accuracy Channels Accuracy
WE 11 100% 7 100%
JSKF 19 100% 7 100%
Calibrated 10 100% 6 100%

From Tab.5, we can see that in the 720-820 nm
spectrum band, for the WE, the precision is only reach
95% using all of 20 channels, whereas the performance of
JSKF is improved further compared to random channels
selection method. The 100% accuracy only needs 3
channels with RF classifier, and needs 6 channels with
random channels selection. And the 100% accuracy only
needs 4 channels with SVM classifier, where efficiency
increased 33% than random channels selection. In this
band, the number of channels that accuracy reach 100%
needed for JSKF is basically as same as the number of
channels required for calibrated intensity signal.

From Tab.6, we can see that in the 1 000 - 1 100 nm
spectrum band, the performance of WE has been

improved further than random channel selection method.

The 100% accuracy only needs 11 channels with RF
classifier, and increase 27% than channel selection
randomly, and it needs 7 channels with SVM classifier,
which improve 53% than channel selection randomly. For
JSKF, the performance is slightly reduced. The number of
channels of RF and SVM classifiers is reduced by 217%
and 40% compared with random channel selection. In this
band, the number of channels needs to reach 100%
accuracy with WE is basically as same as the number of
channels required with calibrated intensity signal.

Based on the above experiments, we can see that WE
and JSKF have different classification results in different
spectral band. The reason is as following: WE
characterizes the degree of dispersion for variables. Due
to the different characteristic wavelength of object, the
absorption characteristic of the spectrum is different. The
characteristic wavelength of coal/rock is in the near-

infrared spectrum”!

, where the absorption characteristic
is obvious, the degree of dispersion for variables is large
and WE changes significantly (Fig.2(a)). Thus, the
classification performance of WE is better in the near-
infrared band. JSKF measures the deviation of the
variable from the normal distribution. The smaller the
data deviation, the better the data quality. The data
collection results show that the deviation of the data is
small in 720-820 nm band (Fig.2(b)). Thus, the
classification performance of JSKF is better in 720-820 nm
band. Meanwhile, both of them can basically reach the
classification performance of calibrated intensity signal in
their corresponding ideal classification band. While
realizing the intensity signal calibration-free, it maintains
excellent classification performances. The results show

that our calibration-free classification method is feasible.
3 Conclusions

In this paper, we proposed a new method based on
the classification of coal/rock in deep coal mines. Without
any reference, we employed WE and JSKF to classify
four different types of coal/rock, explored the

classification performances of different features in

20200518-7
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different spectral bands and evaluated the classification
performance by comparing with calibrated intensity
signal. The following conclusions can be drawn from the
results:

(1) When the spectral information is sufficient, all
features can achieve accurate classification.

(2) WE and JSKF require less spectral channels than
intensity signals to achieve accurate classification.

(3) For different spectral bands, WE and JSKF have
different classification performance, and they can achieve
great classification performance as calibrated intensity
signal in their ideal band.

This research not only solves the problem that
intensity signals cannot be calibrated in the deep coal
mines, but also simplify the complexity of the equipment,
laying the foundation for miniaturized LiDAR. In the
future, we will do the further research for instrument

miniaturization package and deep mine field application.
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