

编码孔径光谱成像仪中凸面闪耀光栅的研制

赵雨时 贺文俊 刘智颖 付跃刚

Development of convex blazed grating in coded aperture spectral imager

Zhao Yushi, He Wenjun, Liu Zhiying, Fu Yuegang

在线阅读 View online: https://doi.org/10.3788/IRLA20220007

您可能感兴趣的其他文章

Articles you may be interested in

光谱维编码中红外光谱成像系统的光学设计

Optical design of MWIR spectral imaging system encoding in spectral dimension 红外与激光工程. 2021, 50(12): 20210700-1-20210700-9 https://doi.org/10.3788/IRLA20210700

宽波段凸面闪耀光栅优化设计

Design and optimization of broadband convex blazed grating 红外与激光工程. 2017, 46(11): 1120003–1120003(7) https://doi.org/10.3788/IRLA201746.1120003

基于强度调制的编码孔径光谱偏振测量方法

Spectral polarization measurement method of coded aperture based on intensity modulation 红外与激光工程. 2019, 48(3): 317003–0317003(5) https://doi.org/10.3788/IRLA201948.0317003

光谱编码计算关联成像技术研究

Study on spectral encoded computational ghost imaging 红外与激光工程. 2021, 50(1): 20200120-1-20200120-8 https://doi.org/10.3788/IRLA20200120

offner型连续变焦中波红外光谱成像系统设计

Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme 红外与激光工程. 2019, 48(7): 718003-0718003(9) https://doi.org/10.3788/IRLA201948.0718003

基于小型化便携式光谱成像技术的分类识别系统研究

Research on classification and recognition system based on miniaturized portable spectral imaging technology 红外与激光工程. 2019, 48(10): 1023001–1023001(6) https://doi.org/10.3788/IRLA201948.1023001

编码孔径光谱成像仪中凸面闪耀光栅的研制

赵雨时,贺文俊,刘智颖,付跃刚

(长春理工大学光电工程学院,吉林长春130022)

摘 要:针对一款基于 DMD 的光谱维编码 Offner 光谱成像仪对凸面闪耀光栅的性能要求,提出了一种凸面闪耀光栅的宏观-微观一体化优化设计方法,利用三维偏振光追迹算法有机融合了宏观层面的 Offner 光学系统设计与微观层面的凸面闪耀光栅槽型设计。介绍了编码孔径 Offner 光谱成像系统的 组成和工作原理,并结合系统的使用要求设计了一款平均衍射效率为 85.47% 的中波红外凸面闪耀光栅。在此基础上,采用超精密单点金刚石车床成功制备了曲率半径为 120 mm、周期为 99.945 µm、闪耀 角为 1.1783°、槽深为 1.834 µm 的凸面闪耀光栅。测试结果表明,在 3~5 µm 光谱范围内,最大衍射效 率为 93.46%,平均衍射效率为 84.29%,与理论设计值较为吻合,验证了凸面闪耀光栅设计方法的有 效性。

关键词:光谱成像; 凸面光栅; 衍射效率; 编码孔径 中图分类号: O433 文献标志码: A **DOI**: 10.3788/IRLA20220007

Development of convex blazed grating in coded aperture spectral imager

Zhao Yushi, He Wenjun, Liu Zhiying, Fu Yuegang

(School of Opto-electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China)

Abstract: Aiming at the performance requirements of a DMD-based Offner spectral imager encoding in spectral dimension for a convex blazed grating, a macro-micro integrated optimization design method for convex blazed gratings was proposed. The three-dimensional polarization ray tracing algorithm was used to organically integrate the optical design of the Offner system in macro-level and the groove design of the convex blazed grating in micro-level. The composition and working principle of the coded aperture Offner spectral imaging system were introduced, and a MWIR convex blazed grating with an average diffraction efficiency of 85.47% was designed according to the requirements of the system. On this basis, a convex blazed grating with curvature radius of 120 mm, grating period of 99.945 µm, blazed angle of 1.1783°, groove depth of 1.834 µm was successfully fabricated by using an ultra-precision single-point diamond lathe. The test results show that in the spectral range of 3-5 µm, the maximum diffraction efficiency is 93.46% and the average diffraction efficiency is 84.29%, which is in good agreement with the theoretical design value. Thus, the proposed design method of the convex blazed grating is verified to be effective and valuable.

Key words: spectral imaging; convex grating; diffraction efficiency; coded aperture

收稿日期:2021-12-31; 修订日期:2022-02-20

基金项目:国家自然科学基金 (61805025)

作者简介:赵雨时,男,博士生,主要从事光谱成像方面的研究。

导师简介:付跃刚,男,教授,博士生导师,博士,主要从事仿生光学和光学测量等方面的研究。

0 引 言

编码孔径光谱成像仪是一种新体制的光谱成像 系统,可以通过少量的二维投影来感知三维空间的光 谱数据立方体,具有光通量大、信噪比高、实时性好 等诸多优点^[1-2];在军事侦察^[3]、精细农业^[4]、大气遥感^[5] 等领域具有良好的应用前景。根据分光原理的不同, 编码孔径光谱成像仪主要分为色散棱镜型^[6-8]和衍射 光栅型^[9-10]。由于具备成像质量高、结构简单紧凑、 色畸变和谱线弯曲小、光谱分辨率高等优点,基于 Offner 结构的编码孔径光谱成像系统近年来受到了 广泛关注^[11-12]。而凸面光栅作为核心分光器件,其在 工作波段范围内的衍射效率直接影响系统的信噪比 和探测灵敏度^[13],其色散能力影响光谱分辨率,其面 型误差影响系统的成像质量。

凸面光栅的微纳结构特征参数是影响衍射效率 的关键因素。按照槽型的不同,凸面光栅主要分为正 弦光栅、矩形槽光栅和闪耀光栅,虽然正弦光栅和矩 形槽光栅的制备工艺比较成熟,但是存在衍射效率 低、杂散光多的问题^[14]。因此,如何设计和制备高衍 射效率的凸面闪耀光栅对提升基于 Offner 结构的光 谱成像仪性能具有重要意义。

目前,凸面闪耀光栅的设计分为宏观层面的 Offner 光学系统设计和微观层面的闪耀光栅槽型设计两部 分,且这两个部分相对独立。其中闪耀光栅的槽型设 计主要采用严格耦合波分析方法 (RCWA)或有限时 域差分法 (FDTD),分析特定偏振态的平面波按某一 角度入射到平面光栅时槽型参数与衍射效率的关系, 从而对槽型参数进行优化设计^[13,15-17]。对于传统的推 扫型 Offner 光谱成像仪,由于狭缝的存在,一般为线 视场,入射到凸面光栅上的光线入射角基本集中于一 个较小的范围内,这种设计方法行之有效。然而,对 于基于 Offner 结构的凝视型编码孔径光谱成像系统, DMD 等编码器件替代了狭缝,一维的线视场变为了 二维的面视场,不同视场的光线入射到凸面光栅上时 入射角及方位角都差异较大,传统的凸面闪耀光栅设 计方法不再适用^[18]。

文中针对一款基于 Offner 结构的中波红外编码 孔径光谱成像仪对凸面闪耀光栅的技术要求,提出了 一种新的凸面闪耀光栅设计方法,有机融合了宏观层 面的 Offner 光学系统设计与微观层面的闪耀光栅槽 型设计。首先,简要介绍了基于 Offner 结构的编码孔 径光谱成像系统的组成和工作原理。其次,详细阐述 了凸面闪耀光栅的设计方法、过程及设计结果。然 后,采用超精密单点金刚石车床加工制备了凸面闪耀 光栅样品,并测试了其槽型微观结构尺寸、面型加工 误差、衍射效率等技术指标。最后对工作进行了总 结,给出了研究结论。

1 基于 Offner 结构的编码孔径光谱成像系 统

如图 1 所示,基于 Offner 结构的中波红外编码孔 径光谱成像仪主要由望远系统、双光路 Offner 光栅 成像系统、中继成像系统、两个 DMD 以及制冷型中 波红外探测器等几个部分组成^[18]。望远系统作为前 置成像单元,主要获取远处目标场景信息。DMD-1 位于望远系统的焦面位置,同时也与双光路 Offner 光栅成像系统的物面重合,用来补偿 DMD-2 所产生 的像面倾斜。DMD-2 作为编码器件,配合双光路 Offner 光栅成像系统同时实现对目标场景信息的色 散、编码、聚合等多个功能。中继成像系统将双光路 Offner 光谱成像系统与制冷型中波红外探测器进行 光瞳衔接,实现冷光阑严格匹配。根据中波红外目标 探测应用需求,编码孔径光谱成像仪的技术指标如 表1所示。

双光路 Offner 光栅成像系统作为核心部分,主要 由一个反射式凸面闪耀光栅和一个球面反射镜组成, 其对应的技术指标要求如表2所示^[18]。

表1 编码孔径光谱成像仪技术指标

Tab.1 Specifications of coded aperture spectral imager

Parameters	Value
Wavelength range/µm	3-5
F-number	3.0
Focal length/mm	240
Spatial resolution/mrad	≤0.1
Spectral resolution/nm	100
Detector array size	640×512
Detector pixel size/µm	15
DMD array size	1920×1080
DMD micromirror size/µm	10.8

表 2 双光路 Offner 光栅成像系统的技术指标

Tab.2 Specifications of the dual-pass Offner spectros-

copic sytem

Parameters	Value
Wavelength range/µm	3-5
Object plane size/mm ²	9.6×7.68
Object space NA	0.164
Spectral resolution/nm	100
Dispersion distance/mm	2.4
Optical magification	1

2 凸面闪耀光栅的设计方法

凸面闪耀光栅的设计主要包括三个模块:宏观层 面的传统光学系统设计;三维偏振光追迹算法;微观 层面的凸面闪耀光栅微结构设计与优化。具体算法 流程如图 2 所示。

首先, 开展宏观层面的传统光学系统设计。以双 光路 Offner 光谱成像系统的技术指标要求作为设计 输入参数, 如工作波长范围、物面尺寸、光谱分辨率、 数值孔径、色散距离、放大倍率等; 以物方远心和像 面大小为约束条件, 利用点列图和调制传递函数 (MTF)来评估优化过程中系统的成像质量。通过传 统的光学系统设计过程, 可以获得具有良好成像质 量、光谱分辨率和色散距离均满足要求的双光路 Offner 光谱成像系统。该优化设计过程对凸面闪耀光栅的 设计具有两个作用: (1) 直接获得了凸面闪耀光栅的 曲率半径、衍射级次、光栅周期、有效口径等重要技 术参数; (2) 为三维偏振光追迹算法提供了准确的光

图 2 凸面闪耀光栅的设计方法流程图

Fig.2 Flow diagram of the design method for a convex blazed grating

学结构参数。

其次,采用三维偏振光追迹算法,对完成优化设 计的双光路 Offner 光谱成像系统进行光线追迹,以获 得不同视场的不同光线到达凸面闪耀光栅表面时的 入射角、偏振角、方位角等入射光线信息。将这些信 息作为微观层面的凸面闪耀光栅微结构设计的关键 输入参数。因此,三维偏振光追迹算法是连接宏观层 面的传统光学设计与微观层面的凸面闪耀光栅微结 构设计的关键纽带。

最后,进行微观层面的凸面闪耀光栅微结构设计 和优化。将光栅周期、衍射级次等由宏观层面的传统 光学设计方法获得的参数,以及通过三维偏振光追迹 算法获得的入射光线信息共同作为设计输入参数,通 过严格耦合波分析方法 (RCWA) 精确计算工作波长 范围内的平均衍射效率,结合粒子群优化算法 (PSO) 不断对凸面闪耀光栅的微结构参数进行迭代优化,以 获得收敛的平均衍射效率值和最优的槽型参数。

2.1 宏观层面的传统光学设计

传统的 Offner 光谱成像系统中凸面光栅主要实 现色散分光,而在基于 Offner 结构的凝视型编码孔径 光谱成像系统,凸面光栅同时承担色散分光和合光两 个功能。此外,狭缝的取消以及编码器件 DMD 的引 入导致双光路 Offner 光栅成像系统的光学设计与传 统 Offner 光谱成像系统的设计产生一些区别。如 图 3(a) 所示, 假设凸面闪耀光栅的曲率半径为 $R_{\rm G}$, 其 球心为C_G点。球面反射镜的曲率半径为R_M,其球心 为 C_{M} 点。凸面闪耀光栅与球面反射镜的间隔为 L_{GM} , 物面尺寸为 9.6 mm×7.68 mm。物面中心到球面反射 镜的距离为 L_0 ,物面中心的偏心量为 ΛH ,色散像平面 的中心到球面反射镜的距离为 $L_{\rm D}$,色散距离为 $\delta_{\rm o}$ 为 了实现图1所示的光路, DMD-1应该与双光路 Offner 光栅成像系统的物面重合,而 DMD-2 则位于色散像 平面。如图 3(b) 所示, 在 YZ 视图中, 物平面和色散像 平面均绕 X 轴倾斜 12°, 这样的设计使得色散分光光 路与合光光路关于 XY 平面对称, 合光之后像面与物

面完全重合,有利于减小双光路Offner光栅成像系统的像散,特别是X方向的边缘视场。

双光路 Offner 光栅成像系统的初始结构参数应 满足如下数学关系^[18]:

$$R_{\rm M} = 2R_{\rm G} \tag{1}$$

$$R_{\rm G} = \frac{d\delta}{m(\lambda_2 - \lambda_1)} \tag{2}$$

式中: d为光栅周期; m为光栅衍射级次; \lambda₁和λ₂分别表 示工作波长的最小值和最大值。以表 2 所示的双光 路 Offner 光谱成像系统的技术指标要求作为设计输 入参数, 以物方远心和像面大小为约束条件, 利用点 列图和 MTF 来评估优化过程中系统的成像质量, 设 计结果如表 3 所示。其中, 凸面闪耀光栅的半径为 120 mm, 周期为 100 µm, 衍射级次为-1 级, 外形尺寸 为 102 mm×46 mm。

表 3 双光路 Offner 光栅成像系统的设计结果 Tab.3 Design result of the dual-pass Offner

spectroscopic sysytem	
Parameters	Value
R _G /mm	120
<i>R</i> _M /mm	240
$L_{ m GM}/ m mm$	117.827
L _O /mm	242.826
$L_{\rm D}/{ m mm}$	235.866
$\Delta H/\mathrm{mm}$	41
d/µm	100
m	-1
Length of the grating/mm	102
Width of the grating/mm	46

2.2 三维偏振光追迹算法

三维偏振光追迹是连接宏观层面的传统光学设 计与微观层面的凸面闪耀光栅微结构设计的关键纽 带。其功能为微观层面的凸面闪耀光栅微结构设计 获取光栅表面光线的入射信息,包括入射角分布、偏 振角分布和方位角分布。

三维偏振光追迹算法是传统二维琼斯算法在三 维空间的扩展,假设入射光线和出射光线的偏振态分 别为*E_{in}和E_{out}*,光学系统的三维偏振光追迹矩阵为 **P**total,则相关算法如下^[19-20]:

$$\boldsymbol{E}_{out} = \boldsymbol{P}_{\text{total}} \cdot \boldsymbol{E}_{in} \tag{3}$$

$$\boldsymbol{P}_{total} = \prod_{q=N,-1}^{1} \boldsymbol{P}_{q} \tag{4}$$

式中:N为光学表面总数;**P**_q为第q个光学界面的三维 偏振光追迹矩阵,可由下式计算得到:

$$\boldsymbol{P}_q = \boldsymbol{O}_{out,q} \cdot \boldsymbol{J}_q \cdot \boldsymbol{O}_{in,q}^{-1} \tag{5}$$

$$O_{out,q} = \begin{pmatrix} \hat{s}'_{x,q} & \hat{p}'_{x,q} & \hat{k}_{x,q} \\ \hat{s}'_{y,q} & \hat{p}'_{y,q} & \hat{k}_{y,q} \\ \hat{s}'_{z,q} & \hat{p}'_{z,q} & \hat{k}_{z,q} \end{pmatrix}$$
(6)

$$J_{q} = \begin{pmatrix} \alpha_{s,q} & 0 & 0 \\ 0 & \alpha_{p,q} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(7)

$$O_{in,q}^{-1} = \begin{pmatrix} \hat{s}_{x,q} & \hat{s}_{y,q} & \hat{s}_{z,q} \\ \hat{p}_{x,q} & \hat{p}_{y,q} & \hat{p}_{z,q} \\ \hat{k}_{x,q-1} & \hat{k}_{y,q-1} & \hat{k}_{z,q-1} \end{pmatrix}$$
(8)

$$\hat{s}_{q} = \frac{\hat{k}_{q-1} \times \hat{k}_{q}}{|\hat{k}_{q-1} \times \hat{k}_{q}|}, \quad \hat{p}_{q} = \hat{k}_{q-1} \times \hat{s}_{q}, \quad \hat{p}'_{q} = \hat{k}_{q} \times \hat{s}_{q}, \tag{9}$$

式中: J_q为菲涅耳公式局部坐标系下的三维琼斯矩阵; O_{out.q}和O_{in.q}为三维坐标变换矩阵; α_{s.q}和α_{p.q}分别为第q个界面上S波和P波分量的振幅透射(反射)系数; ŝ和p为菲涅耳公式的特征基底矢量; k̂_{q-1}和k̂_q分别为第q个界面入射光线和出射光线的传播矢量。

根据双光路 Offner 光栅成像系统的设计结果建 立三维偏振光追迹模型, 计算得到了入射到凸面闪耀 光栅上的全部光线信息。如图 4 所示, 图 4(a)~(c) 分 别表示归一化视场为 (0,-1) 时凸面闪耀光栅入射光 线的入射角分布、方位角分布和偏振角分布; 图 4(d)~ (f) 分别表示归一化视场为 (1,1) 时凸面闪耀光栅入射 光线的入射角分布、方位角分布和偏振角分布。可 见, 对于同一视场, 入射角分布比较集中, 而方位角和 偏振角的分布差异较大; 而对于不同视场, 入射角和 方位角的差异较大, 偏振角差异较小。

在归一化的二维面视场内进行均匀采样,依次计 算每个视场下所有光线的入射角、方位角和偏振角,

图 4 凸面闪耀光栅上的入射光线信息

Fig.4 Information of the rays on the convex blazed grating

并统计全部视场下所有入射光线的信息,结果如图 5 所示。由图 5(a)可知,入射角范围为 16.35°~22.37°, 且出现了 21 个明显的离散峰值。这是因为在归一化 的二维面视场内采样数为 21×21,对于双光路 Offner 光栅成像系统,在凸面闪耀光栅上的入射角对 Z 方向 的视场变化不敏感,而对 X 方向的视场变化敏感,且 每个视场的入射角分布都集中在各自峰值附近很小 范围内。由图 5(b) 和图 5(c)可知,方位角范围为 58.51°~ 82.54°,偏振角范围为 67.87°~89.53°,且方位角和偏振 角的分布都较为离散。因此,传统的凸面闪耀光栅设 计方法中,仅仅采用某一固定的入射角、方位角和偏 振角来进行衍射效率的评估和槽型的优化设计具有 明显的局限性。

Fig.5 Statistical histogram of incident angle, azimuth angle and polarization angle

2.3 凸面闪耀光栅微结构设计与优化

严格耦合波分析方法是一种广泛应用于平面光

栅槽型设计的电磁场理论,它将介质光栅当作周期调制的平面波导处理,通过麦克斯韦方程组和边界条件进行求解波导模式的本征方程^[21],其获得的所有解都必须满足 Hill 微分方程^[22]。由于曲率的存在,凸面闪耀光栅表面的介电常数函数并不是严格的周期函数,这打破了使用 Hill 微分方程的先决条件。文中利用三维偏振光追迹算法克服了这个冲突,将凸面闪耀光栅表面进行微元化,每一个微元表面根据菲涅耳公式建立自身的局部坐标系,并结合三维偏振光追迹算法获得该微元表面的入射光线信息。在局部坐标系中,任意微元表面都近似等效为平面光栅,满足 Hill 微分方程。

以中心波长作为闪耀波长λ_B,以能量占比最大的 那一类光线的入射角作为入射角*i*,根据闪耀光栅方 程可得衍射角θ:

$$d(\sin i - \sin\theta) = m\lambda_B \tag{10}$$

进一步可得闪耀角的初始值γ:

$$2\gamma = \theta - i \tag{11}$$

假设凸面闪耀光栅的槽型为直角三角形,则可计 算得到槽深的初始值*h*:

$$h\left(\tan\gamma + \frac{1}{\tan\gamma}\right) = d \tag{12}$$

将光栅周期、衍射级次、波长、入射角、方位角、 偏振角、闪耀角初始值、槽深初始值等作为设计输入 参数,通过 RCWA 可计算出某一视场下任意入射光 线信息对应的衍射效率 $\eta_{m,n}^{LF}$,上标 λ 表示工作波长, F表示视场编号;下标 m 和 n 分别表示入射光线的光 瞳采样序号。则工作波长范围 $\lambda_1 \sim \lambda_2$ 内的平均衍射 效率为:

$$\boldsymbol{\eta}_{G} = \frac{\sum_{\kappa=1}^{K} \sum_{\lambda=\lambda_{1}}^{\lambda_{2}} \sum_{m=1}^{M} \sum_{n=1}^{N} \boldsymbol{\eta}_{m,n}^{\lambda,\kappa}}{K \times Y \times m \times n}$$
(13)

式中: *K* 为视场采样数; *Y* 为工作波长采样数; *M* 和 *N* 表示光瞳采样数。以工作波长范围内的平均衍射 效率为优化目标函数,结合粒子群优化算法 (PSO) 不 断对凸面闪耀光栅的微结构参数进行迭代优化。

$$\begin{cases}
P = [X^{t}], X^{t} = [\gamma_{t}, h_{t}] \\
\eta_{g} = F([X_{g}^{t}]) = [\eta_{g}^{t}] \\
\eta_{t} = F([X_{t}^{g}]) = [\eta_{t}^{g}]
\end{cases}$$
(14)

第51卷

粒子群 **P**中每个单独的粒子记为**X**,其变量为闪 耀角γ和槽深h,t为粒子序号,g为迭代序数。利用 RCWA 计算工作波长范围内平均衍射效率的算法表 示为 F。η_s表示第g次迭代中所有粒子衍射效率的集 合,而η_t表示粒子群中第t个粒子在所有迭代次数中衍 射效率的集合,如公式(14)所示:

$$\begin{cases} \boldsymbol{\eta}_{g}^{best} = \max\left(\boldsymbol{\eta}_{g}\right) = F\left(\boldsymbol{X}_{g}^{best}\right) \\ \boldsymbol{\eta}_{t}^{best} = \max\left(\boldsymbol{\eta}_{t}\right) = F\left(\boldsymbol{X}_{t}^{best}\right) \end{cases}$$
(15)
$$\begin{cases} \Delta_{g}^{t} = \boldsymbol{X}_{g-1}^{t} - \boldsymbol{X}_{g}^{t} \\ \Delta_{g}^{best} = \boldsymbol{X}_{g}^{t} - \boldsymbol{X}_{g}^{best} \\ \Delta_{t}^{best} = \boldsymbol{X}_{g}^{t} - \boldsymbol{X}_{t}^{best} \end{cases}$$
(16)

如公式 (15)~(16), 在利用 PSO 进行优化过程中, 有三种中间参量为关键参量:即当前迭代序数 g 中特 定粒子 t 的衍射效率 η_{s}^{i} ,当前迭代序数 g 中所有粒子 的最大衍射效率 η_{s}^{best} ,以及特定粒子 t 在所有迭代次 数中的最大衍射效率 η_{s}^{best} 。它们对应的变量 X_{s}^{i} 、 X_{s}^{best} 、 X_{t}^{best} 同时也被记录。此外,这三个变量与上一 代的差值分别为 Δ_{s}^{i} 、 Δ_{s}^{best} 和 Δ_{t}^{best} ,分别与惯性系数 k_{1} 、 个体约束因子 k_{2} 、粒子群约束因子 k_{3} 相乘后相加创建 下一代的变化。每个粒子X不断迭代,搜索优化目标 函数的最大值,直到平均衍射效率收敛,如公式 (17) 所示:

$$\begin{cases} \Delta_{g+1}^{t} = k_{1}\Delta_{g}^{t} + k_{2}\Delta_{g}^{best} + k_{3}\Delta_{t}^{best} \\ X_{g+1}^{t} = X_{g}^{t} + \Delta_{g}^{t} \\ P_{g+1} = [X_{g+1}^{t}] \end{cases}$$
(17)

PSO 优化算法的初始参数如表 4 所示, 粒子数为

表 4 粒子群优化算法的初始参数

Tab.4 Initial Parameters of the PSO optimization algorithm

Parameters	Value
Number of particles	20
Maximum number of generations	100
Inertia factor k_1	0.8
Constriction factor of individual k_2	0.5
Constriction factor of swarm k_3	0.5
Core function	RCWA
Coating material	Gold
Substrate material	Copper
Dimension	2
Number of spectrum channels	20
Variables	γ & h

20, 最大迭代次数为 100, 惯性系数 $k_1 = 0.8$, 个体约束 因子 $k_2 = 0.5$, 粒子群约束因子 $k_3 = 0.5$, 光谱通道数为 20, 基底材料为无氧铜, 光栅材料为金。PSO 优化算 法的迭代过程及结果如图 6 所示, 经过 16 次迭代优 化后, 平均衍射效率收敛于 85.47%。优化后闪耀角 为 1.1895°, 槽深为 1.85 μ m。

Fig.6 Iterative process of PSO optimization algoritm

3 凸面闪耀光栅的加工与测试

目前,凸面闪耀光栅的加工方法主要有电子束直 写法^[23]、全息离子束刻蚀法^[24]、X射线光刻法^[25]、机 械刻划法^[15,26]等。由于优化设计后凸面闪耀光栅的 周期较大 (100 μm),工作波长范围为 3~5 μm,对凸面 闪耀光栅的面型误差和表面粗糙度要求并不苛刻,且 外形尺寸较大 (102 mm×46 mm),因此采用基于单点 金刚石车削工艺的机械刻划法^[15]。

文中采用美国 ATMTEK Precitech 公司的 Nanoform700 Ultra 四轴超精密单点金刚石车床作为凸面 闪耀光栅的加工设备。光栅基底材料为无氧铜,采用 刀尖角为 90°的单晶偏尖刀作为刀具,如图 7(a)所示, 对凸面光栅基底进行槽型的加工和制备,如图 7(b) 所示,获得的凸面闪耀光栅样品如图 7(c)所示。加工 后的凸面闪耀光栅镀制金膜,以在中波红外波段获得 最高的衍射效率。

采用白光干涉仪对凸面闪耀光栅的槽型制造误 差进行检测,如图 8 所示,光栅周期为 99.945 μm,槽 深为 1.834 μm,闪耀角为 1.1783°,光栅槽面基本平 整,脊线较为尖锐,与理论槽型接近。

作为双光路 Offner 光栅成像系统的核心元件,凸 面闪耀光栅同时承担色散分光和合光的功能,入射场 景光波将在凸面闪耀光栅上发生两次衍射,因此,凸

图 7 凸面闪耀光栅的加工 Fig.7 Fabrication of the convex blazed grating

面闪耀光栅的加工面型误差将对衍射波前产生直接 影响,从而降低光谱成像系统的成像质量。利用 Zygo干涉仪对凸面闪耀光栅的0级衍射光进行干涉 测试,获得了光栅表面的面型误差峰谷值 PV为 0.545λ_{test},均方根值 RMS 为0.085λ_{test},其中测试波长 λ_{test}为 632.8 nm,如图 9 所示。光栅表面产生的波前 误差主要表现为像散,这主要是因为加工过程中凸面 闪耀光栅沿两个正交方向的半径*R_{GC}和R_{GX}*不完全相 等造成的。若以最小工作波长λ₁ =3 μm 进行换算,可 得 PV 为0.115λ₁, RMS 为0.018λ₁,满足瑞利判据对波 前误差 PV 小于λ/4的要求。

图 10(a) 为凸面闪耀光栅衍射效率测量装置原理

图 8 凸面闪耀光栅的槽型制造误差检测结果

Fig.8 Test result of groove fabrication error of the convex blazed grating

图 9 凸面闪耀光栅零级光波前形貌图

Fig.9 Topography of zero-order optical wavefront of the convex blazed grating

Fig.10 Diffraction efficiency test of the convex blazed grating

图,该装置主要由氮化硅红外光源、单色仪、光功率 计、球面反射镜以及凸面闪耀光栅组成,其中球面反 射镜为双光路 Offner 光栅成像系统中的主镜,镀制金 膜。氮化硅红外光源采用卓立汉光 LSSiN-40,其光谱 范围覆盖 1~14 μm;单色仪采用卓立汉光 Omni-λ 200 i, 焦距为 200 mm,可在 3~5 μm 范围内进行波长 扫描。首先,利用分光光度计测试获得金膜陪镀片在 3~5 μm 光谱范围内各波长采样点的反射率r_λ。其次, 将单色仪的出射狭缝换为圆孔,并将光功率计放置在 单色仪出光口,记录单色仪进行波长扫描时各波长采 样点的出射光功率P_{0,λ}。最后,将单色仪出光口与双 光路 Offner 光栅成像系统的物面重合,光功率计放置 在 Offner 系统的色散像面上,再次记录单色仪进行波 长扫描时各波长采样点的出射光功率*P_{G,1}*。则凸面闪 耀光栅在各波长采样点的衍射效率为:

$$\boldsymbol{\eta}_{\lambda} = \frac{P_{G,\lambda}}{r_{\lambda}^2 \cdot P_{0,\lambda}} \tag{18}$$

图 10(b) 为测试得到的凸面闪耀光栅衍射效率曲 线, 波长采样间隔为 100 nm。可见最高衍射效率在波 长 3.6 μm 附近达到 93.46%, 起始波长 3 μm 处衍射效 率为 77.65%, 终止波长 5 μm 处衍射效率为 71.18%, 平均衍射效率为 84.29%, 与前文 PSO 优化结果较为 吻合。

4 结 论

根据面视场中波红外编码孔径光谱成像系统对 凸面闪耀光栅的性能要求,提出了一种新的凸面闪耀 光栅设计方法,将传统光学设计方法、三维偏振光追 迹算法、严格耦合波理论以及粒子群优化算法等多种 方法有机融合,构建了凸面闪耀光栅的宏观-微观一 体化优化设计方法。采用超精密单点金刚石车床加 工制备了凸面闪耀光栅样品,并对其槽型尺寸、面型 加工误差及衍射效率进行了测试。测试结果表明: (1) 光栅周期为 99.945 µm, 槽深为 1.834 µm, 闪耀角 为 1.1783°, 与理论槽型接近; (2) 以最小工作波长 $\lambda_1 = 3 \mu m$ 计算, 光栅 表面 面型 误差 PV 为 0.115 λ_1 , RMS 为0.018₁,满足瑞利判据对波前误差 PV 小于 λ/4的要求; (3) 在 3~5 μm 光谱范围内, 最大衍射效率 为 93.46%, 平均衍射效率为 84.29%, 与理论设计值较 为吻合,验证了文中所提出的凸面闪耀光栅设计方法 的有效性。

参考文献:

- Galvis L, Lau D, Ma X, et al. Coded aperture design in compressive spectral imaging based on side information [J]. *Applied Optics*, 2017, 56(22): 6332-6340.
- [2] Wang L, Xiong Z, Gao D, et al. Dual-camera design for coded aperture snapshot spectral imaging [J]. *Applied Optic*, 2015, 54(4): 848-858.
- [3] Manolakis D, Marden D, Shaw G A. Hyperspectral image processing for automatic target detection applications [J]. *Lincoln Laboratory Journal*, 2003, 14(1): 79-116.
- [4] Kamruzzaman M, Makino Y, Oshita S. Rapid and nondestructive detection of chicken adulteration in minced beef

using visible near-infrared hyperspectral imaging and machine learning [J]. *Journal of Food Engineering*, 2016, 170(7): 8-15.

- [5] Adam E, Mutanga O, Rugege D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review [J]. *Wetlands Ecology & Management*, 2010, 18: 281-296.
- [6] Rueda H, Arguello H, Arce G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging
 [J]. J Opt Soc Am A, 2015, 32: 80-89.
- [7] Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging [J]. *Applied Optics*, 2008, 47: B44-B51.
- [8] Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture [J]. *Optics Express*, 2007, 15: 14013-14027.
- [9] Shao Xiujuan, Hu Bingliang, Yan Peng. Design of multi-spectral adaptive spectrometer based on Hadamard transform [J]. *Infrared and Laser Engineering*, 2010, 39(5): 963-966. (in Chinese)
- [10] Wu Y, Mirza I O, Arce G R, et al. Development of a digital micromirror device based multishot snapshot spectral imaging system [J]. *Optics Letters*, 2011, 36: 2692-2694.
- [11] Goldstein N, Vujkovic-Cvijin P, Fox M J, et al. DMD- based adaptive spectral imagers for hyperspectral imagery and direct detection of spectral signatures [C]//Proceedings of SPIE, 2009, 7210: 721008.
- [12] Vujkovic-Cvijin P, Goldstein N, Fox M J, et al. Adaptive spectral imager for space-based sensing [C]//Proceedings of SPIE, 2006, 6206: 62060X.
- [13] Zheng Zhizhong, Yang Zhong, Xiu Liancun. Development and application of shortwave infrared convex blazed grating with high diffraction efficiency [J]. *Acta Optica Sinica*, 2020, 40(12): 1205002. (in Chinese)
- [14] Wang Dinglu, Zhang Daiwei, Xu Banglian, et al. Research progress in design and fabrication of convex grating [J]. *Laser & Optoelectronics Progress*, 2021, 58(11): 1100002. (in Chinese)
- [15] Xu D, Owen J D, Papa J C, et al. Design, fabrication, and testing of convex reflective diffraction gratings [J]. *Optics Express*,

2017, 25(13): 15252-15267.

- [16] Liu Quan, Wu Jianhong, Guo Peiliang, et al. Fabrication of convex blazed grating with high diffraction efficiency [J]. *Chinese Journal of Lasers*, 2019, 46(3): 0313001. (in Chinese)
- [17] Wang Haibin, Liu Quan, Wu Jianhong. Fabrication of convex blazed grating by Ar⁺ ion-beam etching [J]. *Acta Optica Sinica*, 2011, 31(4): 0405002. (in Chinese)
- [18] Zhao Y, He W, Liu Z, et al. Optical design of an Offner coded aperture snapshot spectral imaging system based on dual-DMDs in the mid-wave infrared band [J]. *Optics Express*, 2021, 29(24): 39271-39283.
- [19] Yun G, Crabtree K, Chipman R A. Three-dimensional polarization ray-tracing calculus I: Definition and diattenuation [J]. *Applied Optics*, 2011, 50(18): 2855-2865.
- [20] Yun G, McClain S C, Chipman R A. Three- dimensional polarization ray-tracing calculus II: Retardance [J]. *Applied Optics*, 2011, 50(18): 2866-2874.
- [21] Moharam M, Grann E B, Pommet D A, et al. Formulation for stable and efficient implementation of the rigorous coupledwave analysis of binary gratings [J]. *J Opt Soc Am A*, 1995, 12: 1068-1076.
- [22] Moharam M, Pommet D A, Grann E B, et al. Stable implementation of the rigorous coupled-wave analysis for surfacerelief gratings: Enhanced transmittance matrix approach [J]. J Opt Soc Am A, 1995, 12: 1077-1086.
- [23] Wilson D W, Maker P D, Muller R E, et al. Recent advances in blazed grating fabrication by electron-beam lithography [C]//Proceedings of SPIE, 2003, 5173: 51730E.
- [24] Aoyagi Y, Namba S. Blazed ion-etched holographic gratings [J]. Optica Acta: International Journal of Optics, 1976, 23(9): 701-707.
- [25] Mouroulis P, Hartley F T, Wilson D W, et al. Blazed grating fabrication through gray-scale X-ray lithography [J]. *Optics Express*, 2003, 11(3): 270-281.
- [26] Davies M A, Dutterer B S, Suleski T J, et al. Diamond machining of diffraction gratings for imaging spectrometers [J]. *Precision Engineering*, 2012, 36(2): 334-338.