

透射式GaAs光电阴极时间分辨特性研究

韩明 郭欣 邱洪金 张若愚 贾甜甜 刘旭川 胡轶轩

Study on the time-resolved characteristics of the transmission-mode GaAs photocathode

Han Ming, Guo Xin, Qiu Hongjin, Zhang Ruoyu, Jia Tiantian, Liu Xuchuan, Hu Yixuan

在线阅读 View online: https://doi.org/10.3788/IRLA20210761

您可能感兴趣的其他文章

Articles you may be interested in

高量子效率InP/In053Ga047As/InP红外光电阴极模拟

Simulation of InP/In_{0.53}Ga_{0.47}As/InP infrared photocathode with high quantum yield 红外与激光工程. 2019, 48(2): 221002 https://doi.org/10.3788/IRLA201948.0221002

液晶空间光调制器过驱动方法的FPGA实现

FPGA implementation of the overdriving method of liquid crystal spatial light modulator 红外与激光工程. 2019, 48(7): 722002 https://doi.org/10.3788/IRLA201948.0722002

Ⅲ族氮化物光电阴极原位程序升温脱附

In situ temperature programmed desorption of Ⅲ-nitride photocathode 红外与激光工程. 2019, 48(10): 1017002 https://doi.org/10.3788/IRLA201948.1017002

连续激光供能单结GaAs光电池输出特性仿真

Simulation of single-junction GaAs photovoltaic cell output characteristics by continuous wave laser irradiation 红外与激光工程. 2017, 46(10): 1003006 https://doi.org/10.3788/IRLA201751.1003006

采用SiPM探测三硝基甲苯的时间分辨拉曼光谱

Time-resolved Raman spectroscopy of trinitrotoluene detected by Silicon Photomultiplier 红外与激光工程. 2018, 47(10): 1020004 https://doi.org/10.3788/IRLA201847.1020004

光强均匀度对GaAs电池组光电转换效率的影响

Effect of light intensity uniformity on the photoelectric conversion efficiency of GaAs cells 红外与激光工程. 2017, 46(6): 606001 https://doi.org/10.3788/IRLA201746.0606001

透射式 GaAs 光电阴极时间分辨特性研究

韩 明1.2, 郭 欣1.2, 邱洪金1.2, 张若愚1.2, 贾甜甜1.2, 刘旭川1.2, 胡轶轩1.2

(1. 微光夜视技术重点实验室,陕西西安 710059;2. 昆明物理研究所,云南昆明 650223)

摘 要:时间分辨特性是 GaAs 光电阴极应用于泵浦探测等领域的一种极为重要的性能参量。采用 矩阵差分求解光电子扩散模型的方式计算了光电子连续性方程和出射光电子流密度方程,发现影响 GaAs 光电阴极时间分辨特性的因素包括 GaAs/GaAlAs 后界面复合速率、GaAs 电子扩散系数和 GaAs 激活层厚度,之后较为系统地研究了这三种物理因素对 GaAs 光电阴极时间分辨特性的影响。 研究结果表明,GaAs 电子扩散系数和 GaAs/GaAlAs 后界面复合速率与光电阴极的响应速率存在非线 性正比关系,且随着两者的增大,GaAs 光电阴极将出现饱和响应速率。激活层厚度对 GaAs 光电阴极 响应时间的影响最大,通过激活层厚度的适当减薄可以将 GaAs 光电阴极的响应时间缩短至 20 ps,可 满足绝大多数光子、粒子探测的快响应需求。该研究为快响应 GaAs 光电阴极的实验和应用提供了必 要的理论支撑。

关键词:响应时间; GaAs 光电阴极; 光电子扩散模型 中图分类号: O462.3 文献标志码: A DOI: 10.3788/IRLA20210761

Study on the time-resolved characteristics of the transmissionmode GaAs photocathode

Han Ming^{1,2}, Guo Xin^{1,2}, Qiu Hongjin^{1,2}, Zhang Ruoyu^{1,2}, Jia Tiantian^{1,2}, Liu Xuchuan^{1,2}, Hu Yixuan^{1,2}

Science and Technology on Low-Light-Lever Night Vision Laboratory, Xi'an 710059, China;
 Kunming Institute of Physics, Kunming 650223, China)

Abstract: Time-resolved characteristics are a very important performance parameter of GaAs photocathodes used in pump detection and other fields. In this paper, the photoelectron continuity equation and the outgoing photoelectron flow density equation are calculated by solving the photoelectron diffusion model by the matrix difference method. The factors affecting the time-resolved characteristics of the GaAs photocathode include the recombination rate of the GaAs/GaAlAs rear interface, GaAs electron diffusion coefficient and GaAs active layer thickness. Then, the effects of these three physical factors on the time-resolved characteristics of the GaAs photocathode are systematically studied. The research results show that the GaAs electron diffusion coefficient and the GaAs/GaAlAs rear interface recombination rate have a nonlinear proportional relationship with the response rate of the photocathode, and the saturation response rate of the GaAs photocathode will appear as the two increase. The thickness of the GaAs active layer has the greatest impact on the response time of the GaAs photocathode can be reduced to 20 ps by appropriately thinning the thickness of the active layer, which can meet the fast response requirements for most photon and particle

基金项目:国家自然科学基金 (61771245);国防基础科研计划 (JCKY2018208 B016)

收稿日期:2021-10-18; 修订日期:2022-01-09

作者简介:韩明,男,工程师,硕士,主要从事光电阴极器件结构设计等方面的研究。

detection. This study provides necessary theoretical support for the experiment and application of a fast-response GaAs photocathode.

Key words: response time; GaAs photocathode;

photoelectron diffusion model

0 引 言

超快辐射指的是时间低于 100 ps、涉及 X 射线至 远红外波段的宽光谱范围以及 α 粒子、质子、中子等 粒子的快速信号发射过程。通过对这些粒子或光波 的研究可以有效还原和评估超快辐射过程,因此研究 者们在这些光子、粒子超快现象的快响应探测器上进 行了许多工作[1-3]。作为核爆 y 射线辐射探测系统的 核心部件,光电阴极的响应时间必须小于超快探测系 统的时间分辨要求,且其发射的电子束必须具备尽可 能小的横向扩散和尽可能小的纵向尺寸[4]。在各种光 电阴极材料中, GaAs 具有阈值波长可调、暗发射小、 发射电子能量分布集中等优点,且相比于金属、碱-锑 等光电阴极材料, GaAs 具有更小的发射度, 因此其在 超快探测、窄脉冲激光等应用方面具备明显优势[5-8]。 为了进一步提升 GaAs 光电阴极的时间分辨特性,研 究者通过在 GaAs 材料内部构建内建电场的方式形成 了梯度掺杂光电阴极^[9]和指数掺杂光电阴极^[6],通过 给光电阴极添加外加电场的方式形成了场助光电阴 极^[10],加快了光电子在材料内部的传输速率,并设计 了多种光电阴极结构,将 GaAs 光电阴极的响应时间 提升至 10 ps 左右。然而这些结构的实现对光电阴极 材料的外延工艺和器件的制备工艺提出了较高的要 求,目前国内外还无法大规模量产变掺杂和场助光电 阴极。还有研究者指出,通过将 GaAs 光电阴极的负

电子亲和势调整为一个较小的正电子亲和势可以使 得 GaAs 光电阴极的响应时间达到 1 ps, 但是这种方 式会使得 GaAs 光电阴极的量子效率产生较大的衰 减^[11-12]。传统 GaAs 光电阴极具备较高的量子效率和 成熟稳定的制备工艺, 因此, 文中在传统 GaAs 光电阴 极的基础上研究后界面复合速率、电子扩散系数、激 活层厚度对其时间响应特性的影响, 为 GaAs 光电阴 极的结构设计和材料参数设计提供理论依据, 同时为 快响应 GaAs 光电阴极的实验研究和应用提供必要的 理论指导。

1 GaAs 光电阴极响应时间计算的物理模型

图 1 为传统透射式 GaAs 光电阴极的能带图。根据 Spicer 光电发射"三步模型"理论,首先,光照下能量小于 GaAlAs 的禁带宽度而大于 GaAs 禁带宽度的光子被 p-GaAs 吸收而激发产生光生电子。其次,绝大多数光电子被激发到导带后处于能量较高的热电子状态,之后将通过散射同时向 GaAlAs/GaAs 界面和 GaAs 发射层表面 (*x=d*) 作扩散运动。最后,到达光电阴极表面的光电子隧穿表面势垒发射到真空中。影响 GaAs 光电阴极时间响应特性的主要因素为Spicer 光电发射模型中第二步的电子扩散迁移行为。 光电子通过扩散迁移在光电阴极体内的分布是时间的函数,通过矩阵差分求解 GaAs 激活层内光电子的

Fig.1 Energy band diagram of traditional transmission-mode GaAs photocathode

	红外与激光工程	
第8期	www.irla.cn	第 51 卷

连续性方程(公式(1))和一系列边界条件(公式(2)~(4)),可以求得GaAs光电阴极出射光电子流密度方程(公式(5))的数值解曲线,曲线的半峰宽即为透射式GaAlAs/GaAs光电阴极的响应时间。

$$\frac{\partial \Delta n}{\partial \tau} = D_n \frac{\partial^2 \Delta n}{\partial x^2} - \frac{\Delta n}{\tau_n} \tag{1}$$

$$\left[D_n \frac{\partial \Delta n}{\partial x} - s \Delta n\right]_{x=0} = 0$$
 (2)

$$\Delta n(d,t) = 0 \tag{3}$$

$$\Delta n(x,0) = F \cdot e^{-\alpha x} \tag{4}$$

$$j(t) = -D_n \cdot \frac{\partial \Delta n(x,t)}{\partial x}\Big|_{x=d}$$
(5)

式中: Δn 为光生电子的分布; t 为时间; D_n 为光电子 在 GaAs 界面的扩散系数; x 为距离 GaAlAs/GaAs 界 面的距离; τ_n 为光电子在 GaAs 中的寿命; s 为 GaAlAs/ GaAs 界面的复合速率; d 为 GaAs 激活层厚度; F 为 与 GaAs 吸收系数 α 相关的值:

$$F = \eta (1 - R) \cdot \frac{N}{A} \cdot \alpha \cdot \Delta t \tag{6}$$

式中: R 为 GaAs 光电阴极光照面的反射率; η 为光生 载流子的产生率; N 为入射光子数; A 为光阴极面积; α 为 GaAs 的吸收系数; Δt 为光源的脉冲宽度。

2 GaAs 光电阴极响应时间计算及结果分析

从物理模型可以得出, 对响应时间造成影响的主 要物理参数包括 GaAs 激活层厚度 d、GaAs 电子扩散 系数 D_n 和 GaAs/GaAlAs 界面的后界面复合速率 Sv, 现对这三种因素对 GaAs 光电阴极时间响应特性的影 响进行系统的理论计算。目前传统 GaAs 光电阴极的 电子扩散系数 D_n =50 cm²/s, GaAs/GaAlAs 界面的后界 面复合速率 Sv=10⁵ cm/s, 激活层厚度 d=1.5 μ m, 在对 其中一个参数进行计算分析时, 另外两个参数保持上 述值不变。研究中所采用的入射光波长为530 nm。

2.1 GaAs 电子扩散系数对响应时间的影响

图 2 为不同电子扩散系数下 GaAs 光电阴极出射 光电子流密度随时间的变化曲线。从图中可以明显 看出,随 GaAs 电子扩散系数的增大, GaAs 光电阴极 响应速率不断加快。电子扩散系数是单位浓度梯度 作用下的粒子流密度,可用于表征电子在材料内部浓 度梯度下的运动速率,电子扩散系数越大,电子运动速 率越快,且电子扩散系数与电子迁移率之间存在 Einstein 正比关系。因此,随着电子扩散系数的增大,电子迁 移率也增大,从而使得响应速率不断加快。

- 图 2 不同电子扩散系数下 GaAs 光电阴极出射光电子流密度随时间 的变化曲线
- Fig.2 Curve of the photoelectron current density with time in GaAs photocathode with different electron diffusion coefficients

表1为 GaAs 光电阴极响应时间与 GaAs 电子扩 散系数的对应关系表。可以看出,随着电子扩散的不 断增大,响应速率增长的速度不断变慢,当电子扩散 系数增大到70 cm²/s 后,响应速率基本达到饱和,不 再随电子扩散系数的增大而增大。这主要是因为电 子扩散系数不断增大,电子迁移速率不断加快,在 GaAs 这种双能谷半导体内,这些高能电子将向有效 质量较大的次能谷中跃迁,此时将出现负电阻导致电 子迁移率下降。同时,次能谷中的高能电子将与声子 发生散射而损失能量,因而使得电子迁移速率达到 饱和。

表 1 GaAs 光阴极响应时间与电子扩散系数的对应关 系表

Tab.1 Correspondence table of GaAs photocathode

response time and electron diffusion coefficient

Item	Value				
$D_n/\mathrm{cm}^2\cdot\mathrm{s}^{-1}$	30	40	50	60	70
$\Delta T/\mathrm{ps}$	329	249	203	170	148

2.2 GaAs/GaAlAs 后界面复合速率对响应时间的影响

GaAs/GaAlAs 后界面复合速率指的是GaAs/GaAlAs 界面处单位表面积电子-空穴对的复合数,图3为不

同后界面复合速率下 GaAs 光电阴极出射光电子流密 度随时间的变化曲线。从图中可以看出, GaAs 光电 阴极的响应速率随后界面复合速率的增大而加快。 产生这种现象的原因在于界面复合中心浓度的增大 导致更多的电子向复合中心补充, 阴极内部局部电子 聚集区域增多, 一方面所形成的电势对电子的扩散迁 移运动有一定的加速效果, 另一方面所形成的局域电 场会对 GaAs/GaAlAs 界面的能带结构会产生一定的 影响, 导致界面势垒的降低从而引起 GaAs 内部电子 流密度的增大^[13], 因此使得 GaAs 光电阴极的响应速 率加快。

图 3 不同后界面复合速率下 GaAs 光电阴极出射光电子流密度随时 间的变化曲线

Fig.3 Curve of the photoelectron current density with time in GaAs photocathode with different rear interface recombination rate

表 2 为 GaAs 光电阴极响应时间与 GaAs/GaAlAs 后界面复合速率的对应关系表。可以看出,在后界面 复合速率较小时,其对响应时间的影响较大,随后界 面复合速率的增大响应速率快速增大。当其增大到 约为 10⁶ cm/s 时,响应速率达到饱和,不再随后界面复

表 2 GaAs 光阴极响应时间与后界面复合速率的对应 关系表

Tab.2 Correspondence table of GaAs photocathode response time and rear interface recombination rate

Item			Value		
$Sv/cm \cdot s^{-1}$	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
$\Delta T/\mathrm{ps}$	1354	845	313	203	191

合速率的增大而增大。出现这种现象可能的原因为 当后界面复合速率增大到一定值后,光电子的运动速 率也增长到一个较大值,因此光电子具备较大的能量 而发生能谷跃迁,出现负电阻和声子散射导致电子能 量下降,最终电子运动速率达到稳定饱和。

2.3 GaAs 激活层厚度对响应时间的影响

图 4 为不同激活层厚度下 GaAs 光电阴极出射光 电子流密度随时间的变化曲线图,图中对 GaAs 光电 阴极的出射光电子流密度进行了归一化处理。从图 中可以明显看出,随着激活层厚度的降低,GaAs 光电 阴极的响应时间迅速减小,这主要是激活层厚度减小 使得电子在向真空发射前在激活层内所需扩散迁移 的距离变短,从而电子在阴极内部的扩散迁移时间变 短,使得光电阴极的响应速率加快。

- 图 4 不同激活层厚度下 GaAs 光电阴极出射光电子流密度随时间的 变化曲线
- Fig.4 Curve of the photoelectron current density with time in GaAs photocathode with different active layer thickness

表 3 为 GaAs 光电阴极响应时间与激活层厚度的 对应关系表。可以看出,激活层厚度从 2.5 μm 降低 到 0.5 μm,响应时间从 533 ps 缩短至 23 ps,响应速率

表 3 GaAs 光阴极响应时间与激活层厚度对应关系表 Tab.3 Correspondence table of GaAs photocathode

response time and active layer thickness

Item			Value		
d∕µm	2.5	2.0	1.5	1.0	0.5
$\Delta T/\mathrm{ps}$	533	360	203	90	23

提升了22倍,可以满足大部分光子、粒子辐射探测系统的快响应需求。

3 结 论

文中通过对光电子扩散模型的计算,较为系统地 研究了电子扩散系数、激活层厚度及后界面复合速率 对 GaAs 光电阴极时间分辨特性的影响。研究结果表 明,以上三种物理因素对 GaAs 光电阴极的响应速率 均有较大影响。当电子扩散系数和后界面复合速率 增大到一定值后,GaAs 光电阴极会产生最大饱和响 应速率。激活层厚度对响应时间的影响最大,通过优 化激活层厚度可以使 GaAs 光电阴极的响应时间缩短 至 20 ps 左右,可满足大多数光子、粒子对探测系统 光电阴极的时间分辨要求。文中的研究结果为进一 步优化光电阴极的结构和材料参数提供了一定的理 论依据,为快响应 GaAs 光电阴极的实验设计与应用 提供了必要的理论支撑。

参考文献:

- Vernon S P, Lowry M E. Ultrafast radiation detection by modulation of an optical probe beam [R]. United States: Lawrence Livermore National Lab, 2006.
- [2] Zhang Q, Yan J, Deng B, et al. An ultrafast X-ray scintillating detector made of ZnO (Ga) [J]. *Journal of Instrumentation*, 2017, 12(12): P12033.
- [3] Chen X, Zhang Z C, Zhang K, et al. Study on the time response of a barium fluoride scintillation detector for fast pulse radiation detection [J]. *IEEE Transactions on Nuclear Science*, 2020, 67(8): 1893-1898.
- [4] Sun Q X, Xu X Y, An Y B, et al. Numerical study on time

response characteristics of InP/InGaAs/InP infrared photocathode [J]. *Infrared and Laser Engineering*, 2013, 42(12): 3163-3167. (in Chinese)

- [5] Wang Z H, Zhang Y J, Qian Y S, et al. UV–Vis–NIR broadband response of GaAs-based photocathode with multilayer gradedband cascade structure [J]. *Superlattices and Microstructures*, 2021, 156: 106957.
- [6] Jani H, Chen L, Duan L. Femtosecond pump-probe study of negative electron affinity GaAs/AlGaAs photocathodes [C]//Ultrafast Phenomena & Nanophotonics XXII, Proceedings of SPIE, 2018, 10530: 105300X.
- [7] Cerrito L. Scintillation Process and Light Detectors[M]. Berlin: Springer International Publishing, 2017.
- [8] Jani H P, Zhou R, Zhang Y, et al. Pump-probe study of ultrafast response of GaAs photocathodes grown by MOCVD and MBE [C]//Ultrafast Phenomena and Nanophotonics XXIV, Proceedings of SPIE, 2020, 1278: 12780R.
- [9] Tang W D, Yang W Z, Cai Z P, et al. The time response of exponential doping NEA InGaAs photocathode applied to near infrared streak cameras [J]. *Advanced Materials Research*, 2012, 415-417: 1403-1406.
- [10] Guo L, Li J, Hou X. Calculation of temporal response of fieldassisted transmission-mode GaAs NEA photocathodes [J]. *Solid State Electronics*, 1990, 33(4): 435-439.
- [11] Li X M, Zhou L W. Temporal characteristics of GaAs NEA and alkali metal photocathode [J]. *Journal of Beijing Institute of Technology*, 2003, 12(4): 381-384.
- [12] Militsyn B L, Burrows I, Cash R J, et al. Design of an upgrade to the ALICE photocathode electron gun [C]//Proceedings of EPAC, 2008: 235-237.
- [13] Hirori H, Shinokita K, Shirai M, et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse [J]. *Nature Communications*, 2011, 2: 594-599.