双波长激光移频激发拉曼光谱测试系统设计

Design of Raman spectroscopy measurement system based on shifted excitation method using two laser diodes with different wavelengths

  • 摘要: 拉曼光谱检测常常受到荧光干扰,而移频激发拉曼差分光谱法(SERDS)是一种有效抑制拉曼光谱荧光背景的方法。基于该方法,采用两个波长相近、基于体布拉格光栅技术的固定波长激光器,设计了一套拉曼光谱测试系统。通过控制激光器的功率和温度,保证了输出波长的稳定性。采用高灵敏度的薄型背照式面阵CCD,设计了光谱数据采集光路和电路。同时,在软件上实现了差分光谱的三种重构算法,即简单积分算法、带数值插值的简单积分算法和多重约束解卷积算法。在实验中,利用文中系统对强荧光背景的某品牌香油进行了拉曼光谱测量,分别采用这三种算法处理差分光谱进行光谱重构,并对比了重构效果。实验结果表明,设计的系统能够有效抑制荧光对拉曼光谱检测的影响。

     

    Abstract: Raman detection is often disturbed by fluorescence background, while Shifted Excitation Raman Difference Spectroscopy(SERDS)is an effective method for fluorescent suppression on Raman spectroscopy. Based on this method, a Raman spectroscopy measurement system was designed using two closely space fixed-wavelength laser diodes stabilized with the Volume Bragg Gratings. The output wavelength of laser diodes was stabilized by manipulating their power and temperature. The light path and circuit of spectral data acquisition were designed with back-thinned area array CCD with high sensitivity. Besides, the three different reconstruction algorithms of the difference spectrum, namely simple integration algorithm, simple integration with data interpolation algorithm and multiple energy constraint iterative deconvolution algorithm could be realized through software of this system. The Raman spectra of sesame oil of some brand in the presence of a highly fluorescent were measured with this system and then the spectra reconstructed with three different algorithms to process the difference spectrum respectively were compared. Experimental results show that the system designed in this paper can effectively reject the effect of fluorescence to the Raman spectroscopy measurement.

     

/

返回文章
返回