Target rotation parameter estimation for ISAR imaging via frame processing
Target rotation parameter estimation for ISAR imaging via frame processing
-
摘要: Frame processing method offers a model-based approach to Inverse Synthetic Aperture Radar (ISAR) imaging. It also provides a way to estimate the rotation rate of a non-cooperative target from radar returns via the frame operator properties. In this paper, the relationship between the best achievable ISAR image and the reconstructed image from radar returns was derived in the framework of Finite Frame Processing theory. We show that image defocusing caused by the use of an incorrect target rotation rate is interpreted under the FP method as a frame operator mismatch problem which causes energy dispersion. The unknown target rotation rate may be computed by optimizing the frame operator via a prominent point. Consequently, a prominent intensity maximization method in FP framework was proposed to estimate the underlying target rotation rate from radar returns. In addition, an image filtering technique was implemented to assist searching for a prominent point in practice. The proposed method is justified via a simulation analysis on the performance of FP imaging versus target rotation rate error. Effectiveness of the proposed method is also confirmed from real ISAR data experiments.Abstract: Frame processing method offers a model-based approach to Inverse Synthetic Aperture Radar (ISAR) imaging. It also provides a way to estimate the rotation rate of a non-cooperative target from radar returns via the frame operator properties. In this paper, the relationship between the best achievable ISAR image and the reconstructed image from radar returns was derived in the framework of Finite Frame Processing theory. We show that image defocusing caused by the use of an incorrect target rotation rate is interpreted under the FP method as a frame operator mismatch problem which causes energy dispersion. The unknown target rotation rate may be computed by optimizing the frame operator via a prominent point. Consequently, a prominent intensity maximization method in FP framework was proposed to estimate the underlying target rotation rate from radar returns. In addition, an image filtering technique was implemented to assist searching for a prominent point in practice. The proposed method is justified via a simulation analysis on the performance of FP imaging versus target rotation rate error. Effectiveness of the proposed method is also confirmed from real ISAR data experiments.