燃烧驱动CW DF/HF化学激光器总压损失的一维气体动力学理论分析

Theoretical analysis of one dimensional gas dynamics of total pressure losses for combustion-driven continuous wave DF/HF chemical lasers

  • 摘要: 压力恢复系统是目前高能化学激光器的关键部件,它的总压损失会影响到整个激光器系统的出光能力和全系统的体积重量等关键技术指标。为了研究燃烧驱动CW DF/HF化学激光器总压损失,从一维气体动力学进行了理论分析。分析在激光器增益发生器内引起总压损失的主要因素,是研究高压力恢复激光器增益发生器的基础。主要讨论了引起总压损失的两个主要原因:第一,由于粘性摩擦引起的总压损失;第二,由于光学谐振腔中化学反应放热升温引起的总压损失。计算结果表明,燃烧升温对系统的压力恢复能力有较大的影响。

     

    Abstract: The pressure recovery system is one of the key techniques for the high energy chemical lasers. Total pressure losses affect the key specification of lasers, such as the output ability, the size and weight of laser systems. The total pressure losses for combustion-driven continuous wave DF/HF chemical lasers were proposed according to the theory analysis of one dimensional gas exhausting. The analysis of the main factors of total pressure losses in the gain generator of the laser is the foundation of the research of recovering the gain generator with high pressure. Two major factors of total pressure losses caused by viscous friction and the temperature rise caused by chemical reaction in optical cavity were discussed in this paper. The result shows that temperature rise caused by burning has obvious influence on system's performance of pressure recovery.

     

/

返回文章
返回