Abstract:
With a homemade 1 018 nm fiber laser, an all-fiberized tandem pump broadband superfluorescent fiber source (SFS) based on single stage Yb-doped fiber was set up experimentally. It is the first time to experimently investigate the generation of forward superfluorescence by utilizing tandem pump in detail. Experimental results demonstrate the highest slope efficiency of 88% and the widest full width at half maximum (FWHM) of 14.81 nm for this all-fiberized tandem pump broadband SFS. The length of Ybdoped fiber would affect the maximum of output power, slope effiency and the central wavelength. With an increase in the length of Yb-doped fiber, the maximum of output power and slope effiency of the SFS are reduced. The central wavelength shifts towards the longer wavelength. With an increase of the pump power at a certain fiber length, the maximum of output power and slope effiency of the SFS increase. The central wavelength of superfluorescent spectrum has a slight shift. When 5.7 m Yb-doped fiber is employed as the active medium, the widest FWHM is 14.81 nm and the slope efficiency is above 80.3%. The fluctuation of the output power is less than 1% and no self pulsing or relaxation oscillation effect is observed.