Abstract:
To make up for the poor monochromaticity and the narrow energy range of particle source which is applied at the demarcation of domestic detector in aerospace probe, a precision control mirror bracket driven by the piezoelectric ceramic motor for Compton optical source was designed. In order to impinge accurately with high energy electron beam and obtain the continuous changed peak energy of the particle, the input angle of the laser beam was adjusted exactly with the elastic deformation of the flexure hinges. The mathematic model of stiffness and displacement in both latitude and longitude directions were developed by the principle of the pseudo-rigid-body model. Then, the displacement in both directions and the distributing rule of the stress were discussed through the finite element analysis, and the simulation results indicate that the structural parameters are fully satisfied. Finally, it was confirmed experimentally that the adjustable angles of the precision control mirror bracket both are 1.12in latitudinal and longitude directions, and the positioning accuracy is not less than 610-4.