0.53 μm全固态激光器热效应及其补偿技术研究

Study on thermal effect and compensation technology of 0.53 μm all-solid-state laser

  • 摘要: 基于0.53 m、1.06 m激光双波长复合输出技术在军事上的应用前景,针对光电对抗双波长复合输出激光器的热效应,利用泊松热传导理论,考虑晶体与外界的热交换,建立了更精确的边界条件,仿真分析了三向泵浦、内腔倍频情况下激光晶体热透镜效应和倍频晶体热致相位失配的形成过程,分析讨论了平凸腔补偿热透镜效应的有效性和一般规律。通过实验探究了热效应对双波长复合激光光束质量的影响,验证了平凸腔对热效应的补偿效果,发现平凸腔能增大基模模体积,抑制高阶模增益,改善复合激光光束质量,热效应补偿效果会随着补偿平凸镜曲率半径的减小而增强。

     

    Abstract: Based on the application prospect of 0.53 m and 1.06 m dual-wavelength composite output technology in military affairs, the thermal effect of all-solid-state dual-wavelength composite output laser was studied. Using Poisson heat conduction theory with more accurate boundary conditions, the formation process of thermal lens effect and thermal induced phase-mismatch was simulated and analyzed under the conditions of three LD side-pumping and intracavity frequency-doubling. Effectiveness and general regularity of the plano-convex cavity compensation were then analyzed. Through the experiment, the influence of thermal effect on the beam quality of dual-wavelength laser was explored. Compensation effect of plano-convex cavity on thermal effect was verified. It shows that the quality of composite laser beam improves with larger fundamental mode volume and lower higher-order mode gain in plano-convex cavity. The thermal effect compensation will be enhanced with the decrease of the curvature radius of the plano-convex lens compensation.

     

/

返回文章
返回