光学遥感卫星杂散光扫描测试系统

Scanning measuring system of stray light for optical remote sensing satellite

  • 摘要: 为了实际测量、验证光学遥感卫星的杂散光抑制能力,分析某些特殊卫星的成像轨道和时间特点,研制了一套基于7维大型机器人的光学遥感卫星杂散光扫描测试系统。根据卫星全年太阳照明几何条件,通过建立的光束扫描子系统各机构的控制方程构建照明光束的扫描位置、方位角(-90~+90)和俯仰角(-29~+42.5),精度分别达到10 mm、0.2和0.1。消光子系统采用反射率低于1.5%(400~1 600 nm)的材料和大消光比结构,极黑目标模拟器消光比可达9.910-7。研制的光学遥感卫星杂散光扫描测试系统能够满足目前大部分光学遥感相机的杂散光测试、分析和验证要求。

     

    Abstract: For measuring the stray light level and verifying the ability of stray light suppression of optical remote satellite, the imaging time and orbital characteristic of some satellite were analyed, a scanning system of stray light measuring for optical remote satellite was developed, which was based on a large 7-dimension robot. According to the annual lighting condition of satellite in orbit, the controlling formulae were deduced for all the kinematic mechanism, with the scanning azimuth angle -90-+90, pitch angle -29-+42.5, and their angular accuracy were up to 0.2 and 0.1 separately, the position accuracy was better than 10 mm. Otherwise, an extinction subsystem, which was made was low reflectance material(lower than 1.5% between 400-1 600 nm) and large extinction structure and extinction coefficient could reach 9.910-7, was used to simulate extreme dark target and deep space room. The scanning system of stray light measuring for optical remote satellite can satisfy most optical payload at present for stray light measurement, analysis and verification.

     

/

返回文章
返回