外参数激励MOEMS扫描镜动力学过程与追踪控制

Kinetic process and tracking control of MOEMS scanning mirror under external parameter excitation

  • 摘要: 随着MOEMS扫描镜的发展,其较高的谐振频率及IC兼容的低成本等优点在激光3D图像传感器中应用前景广阔,研究外参数激励MOEMS扫描镜动力学特性与控制问题具有重要的理论和应用价值。从欧拉方程出发,建立静电驱动MOEMS扭转动力学模型,利用四阶Runge-Kutta算法仿真表明:在外参数指令信号激励下,MOEMS扫描镜扭转状态经历阻尼运动、周期、倍周期和混沌等动力学过程,其中周期运动存在着一个较大的参数控制范围。根据Lyapunov稳定性理论,设计了一种连续混沌系统追踪控制器,使受控的MOEMS扫描镜扭转状态收敛于任意期望的指令信号。实验表明,李萨如图指令信号适用于激光3D图像传感器;几何矢量指令信号适用于激光3D打印系统,理论分析与实验相一致。

     

    Abstract: With the development of MOEMS scanning mirror, the scanning mirror has profound applications in prospect on laser 3D image sensor by the advantages of high-speed resonance frequency and low cost for IC compatibility. It has significant theoretical and practical value to study the dynamic characteristic and control problem of MOEMS scanning mirror under external parameter excitation. According to the Euler equation, the torsional dynamical model of electrostatic actuated MOEMS was built in this paper. It was suggested by the simulation through forth-order Runge-Kutta approach when the external parameter excitation was applied in the electrostatic actuated MOEMS reverse dynamical model, the MOEMS scanning mirror should experience the process of damped, periodic, period-doubling, forking, and chaos motion. Besides, the periodic motion had a large parametric control range. According to the stabilization theory by Lyapunov, a type of continuous tracking controller for chaotic system was designed to make the torsional states of the controlled MOEMS scanning mirror convergent to arbitrary expected command signal. It is shown by the experiment that the command signal of Lissajous pattern is suitable for laser 3D image sensor; the command signal of vector diagram is suitable for laser 3D printing system. Therefore, the theoretical analysis is consistent with the experiment.

     

/

返回文章
返回