Abstract:
Texture synthesis is a hot research topic in the fields of computer graphics, vision, and image processing. Traditional texture synthesis methods are generally achieved by extracting effective feature patterns or statistics and generating random images under the constraint of the feature information. Generative adversarial networks (GANs) is a new type of deep network. It can randomly generate new data of the same distribution as the observed data by training generator and discriminator in an adversarial learning mechanism. Inspired by this point, a texture synthesis method based on GANs was proposed. The advantage of the algorithm was that it could generate more realistic texture images without iteration; the generated images were visually consistent with the observed texture image and also had randomness. A series of experiments for random texture and structured texture synthesis verify the effectiveness of the proposed algorithm.