大口径反射镜水平集拓扑优化设计

Level set topology optimization design of large-aperture mirror

  • 摘要: 为了设计适用于空间望远镜的具有质量轻、刚度高、高面形精度特点的大尺寸反射镜,提出了基于水平集方法的反射镜拓扑优化设计方法。首先,在口径1 m反射镜镜体初始结构模型的基础上建立有限元模型,基于SIGFIT采用DRESP2建立面形RMS的目标响应函数,将镜面面形精度直接作为目标函数,在重量约束条件下,基于变密度算法与水平集拓扑方法分别进行优化设计,并基于OSSmooth功能对设计结果分离阈值进行研究。通过对优化模型分离阈值进行分析,得到最优化的输出结构模型。采用水平集方法的拓扑优化设计方法的中间密度单元格数目远小于变密度方法,输出结构边界连接性更好。优化模型面形RMS值小于/50(=632.8 nm),满足设计指标。

     

    Abstract: In order to design large-aperture mirror with light weight, high rigidity, high accuracy characteristics for the space telescope, a mirror topology optimization method based on the level set method was promoted. Firstly, a finite element model based on the 1-meter aperture mirror body initial structural model was constructed. The surface shape aberration RMS of the mirror was used as the objective function, which was constructed by the DRESP2 technique in Optistruct based on SIGFIT. With the weight constraint, the topology methods based on SIMP and level set method were used to optimize the structure separately during the design process. The separation threshold of the design result was studied based on the OSSmooth function. By analyzing the separation threshold of optimized model, the optimized exported structural model could be achieved. The number of elements with the middle density using the level set topology optimization design method is much smaller than level set method, and the connectivity of the structure is much better. The surface shape RMS value of the optimized model is smaller than /50(=632.8 nm), which satisfies the technique specification.

     

/

返回文章
返回