高速滑翔目标点源红外辐射特征模拟及可探测性分析

Infrared radiation characteristics and detectability analysis of point source based on high-speed sliding

  • 摘要: 文中对天基和地基两种观测平台下高超声速滑翔飞行器的点源红外可探测性进行了分析;通过双温度模型的N-S方程和气固耦合模型获得流场参数和壁面温度,并基于逐线法获得气体的物性参数;基于视在光线法求解辐射传输方程来获得HTV-2飞行器的点源本征辐射特性,并考虑大气透过率、背景以及路径辐射参数下计算不同平台的可探测性。结果表明:目标的中长波辐射强度强烈依赖于本体辐射,气体辐射可以忽略;3~5 m谱带内的本征辐射较8~12 m高近一个量级;在固定探测器灵敏度(10-12 W/cm2)下,最大探测距离强烈依赖于波段和探测角度。3~5 m谱带内地基和天基观测的理想最大探测距离分别为450 km和1 450 km,8~12 m谱带分别为300 km和550 km。

     

    Abstract: Detection distances of the hypersonic aircraft based on a point source infrared detectability were predicted under the ground-based and space-based observation platforms. Two-temperature N-S equations were solved and the fluid-solid conjugation heat transfer technique were used for calculations of the surface temperature. Absorption coefficients of species were evaluated by the line-by-line method, and the radiative transfer equation was solved with the line-of-sight method to obtain intrinsic radiation characteristics of the HTV-2 type vehicle. The detectability of the two platforms was calculated considering the atmospheric transmittance, background and path radiation parameters. Results show that the radiation intensity of the target is determined by surface emissions comparing with the gas radiation. The intensity integrated within the 3-5 m band is high nearly an order of magnitude than that within the 8-12 m band. Under the condition of a constant sensitivity, the maximum detection range is strongly dependent on the spectral regions and observation angles. The maximum detection distances under ground-based and space-based stations are 450 km and 1 450 km for the 3-5 m band, and 300 km and 550 km for the 8-12 m band, respectively.

     

/

返回文章
返回