VRM腔高光束质量高功率双波长激光器

High beam quality and high power dual-wavelength laser with VRM

  • 摘要: 研制的双波长短脉冲激光器采用大模体积腔+渐变反射率输出镜技术,对二极管泵浦棒状激光介质产生的热透镜及热退偏进行补偿,在500 Hz下实现了谐振腔短脉冲能量140 mJ,脉宽约17.76 ns的1 064 nm激光输出,20 min能量不稳定性RMS值小于0.3%,激光光束质量M21.6。该实验结果与采用MOPA技术路线谐振腔+预放的方式技术指标相当,但采用谐振腔的技术路线结构简单紧凑。采用水热法生长抗灰迹效应的GTR-KTP晶体作为倍频晶体,相位匹配方式选择Ⅱ类相位匹配,倍频后532 nm激光单脉冲最高能量96 mJ,最高倍频效率68.6%,激光光束质量M22.1。通过能量调节设计,实现了线偏振态1 064 nm和532 nm激光功率连续可调共光轴输出。

     

    Abstract: The double wavelenghs short pulse laser was developed with the high mode volume and variable reflectivity mirror(VRM). The thermal lens and the thermal birefringence produced by diode-lasers pumped rod laser medium was compensated, which presented a short-pulse energy of 140 mJ and 1 064 nm laser output with a pulse width of 17.76 ns at a repetition rate of 500 Hz. The beam quality value was M21.6, and the energy instability(RMS) value of 20 minutes was less than 0.3%. The result of resonator was corresponded with Master Oscillator Power-Amplifier(MOPA) technology, but it was close and neat. The maximum laser energy of 96 mJ at 532 nm was demonstrated by extra-cavity second-harmonic generation(SHG) with type-Ⅱ angle phase-matched GTR-KTP crystal, the KTP crystals with resistance to grey trace effect was grown by hydrothermal method. The maximum efficiency of SHG was 68.6%, and the beam quality value was M22.1. The 1 064 nm and 532 nm laser were output at same axis with energy regulation.

     

/

返回文章
返回