飞秒激光双光子聚合加工微纳结构

Micro/nano structures fabricated by two-photon photopolymerization of femtosecond laser

  • 摘要: 针对微/纳机电系统(MEMS/NEMS)零部件加工制造难题,研究具有亚衍射极限空间分辨率的飞秒激光双光子聚合加工方法,搭建钛蓝宝石飞秒激光微纳加工系统,对液态聚合物材料进行飞秒激光双光子聚合加工工艺试验研究。结果表明:随着激光功率的降低,单个固化点的尺寸减小,加工分辨率提高;扫描步距减小,所加工工件的表面粗糙度数值减小,但加工效率降低。基于CAD软件设计出微米墙和纳米线构成的三维微纳结构,利用飞秒激光双光子聚合加工得到该三维微纳结构实物,通过优化工艺参数加工出直径小于100 nm的纳米线,从而证明飞秒激光双光子聚合加工方法为微/纳器件的制造提供了一种有效方法。

     

    Abstract: It is hard to fabricate parts of Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS). To solve this problem, the method of two-photon photopolymerization of femtosecond laser which had subdiffraction-limited spatial resolution was researched. Micro/nano fabrication system of Ti-sapphire femtosecond laser was set up. Process experiments of femtosecond laser two-photon photopolymerization were carried out using the material of liquid polymer. The experimental results indicate that the size of single solidification point reduces and the fabrication resolution improves with the reduction of laser power. The surface roughness value of the fabricated parts decreases, and the fabrication efficiency reduces with the scanning step reducing. 3D micro/nano structures composed of micro walls and nano wires was designed with CAD software and fabricated with two-photon photopolymerization of femtosecond laser. Nano wire whose diameter was smaller than 100 nm was fabricated after optimizing the process parameters. It is verified that two-photon photopolymerization of femtosecond laser provides an efficient method for micro/nano device.

     

/

返回文章
返回