三轴光电跟踪系统空间目标捕获方法设计

Design of space target acquisition method for three-axis photoelectric tracking system

  • 摘要: 针对三轴光电跟踪系统对空间目标捕获方案的设计问题,首先分析了影响三轴光电跟踪系统捕获空间目标存在的误差源并对主要误差进行了误差估计,即轨道预报误差和三轴指向误差。接着建立了主要误差到不确定区域(Field of uncertain,FOU)的误差传递关系,利用所建的传递关系计算出了不确定区域,并根据不确定区域的大小、形状以及分布类型设计搜索扫描方式。以不确定区域形状为椭圆且服从二维正态分布为例,设计的搜索扫描方式为分行螺旋扫描。最后对该扫描捕获方法进行了数值仿真,验证了该方法的正确性。经过仿真计算,在捕获概率为98%的情况下,目标的平均捕获时间为10.52 s。该方法为三轴光电跟踪系统捕获空间目标提供了一定的理论基础。

     

    Abstract: Aiming at the design problem of the three-axis photoelectric tracking system for space target acquisition, firstly, the error source that affected the three-axis photoelectric tracking system to capture the space target was analyzed, and the main error was estimated, that was, track prediction error and three-axis pointing error. Then the error propagation relationship from the main error to the field of uncertain (FOU) was established, the uncertain area was calculated by using the transfer relation, and the search scanning mode was designed according to the size, shape and distribution type of the uncertain area. Taking an example of the shape of the field of uncertain as an ellipse and obeying the two-dimensional normal distribution, the design of the search mode was the branch spiral scan. Finally, the numerical simulation was also carried out to verify the correctness of the mode. By simulation calculation, the average acquisition time of the target was 10.52 s in the case of the capture probability of 98%. This mode provides a theoretical basis for the acquisition of space targets by three-axis photoelectric tracking system.

     

/

返回文章
返回