利用高阶表面等离子体共振实现窄带完美吸收

Narrow-band perfect absorption utilizing higher-order surface plasmon resonance

  • 摘要: 超材料完美吸波体是一种典型的电磁功能材料,在包括高效太阳能利用等领域有巨大的应用前景。迄今的工作主要集中在工作波长的可调谐性以及双波段、三波段甚至宽带吸收方面。激光防护等特殊应用要求超材料完美吸波体在指定波长附近拥有窄带吸收性能,然而这方面的研究当前还比较少。基于铝反射镜-SiO2介质层-铝圆盘的三层结构,设计并数值模拟研究了一种工作在1 064 nm的窄带超材料完美吸波体。通过对比发现,相比于利用小尺寸结构单元的表面等离子体振荡基模,利用大尺寸结构单元的表面等离子体振荡高阶模式,可以在指定波长处得到线宽更窄的完美吸收效果。进一步,通过对介质层厚度、圆盘直径和晶格周期等主要结构参数进行系统研究,揭示了各个结构参量对于超材料完美吸波体光学响应的影响规律。在此基础上,通过对结构参数的优化,最终得到了透过率为0、反射率低至8.56×10−5、模式线宽约为55 nm的高性能、窄带超材料完美吸波体设计。由于该工作中涉及的所有材料均CMOS兼容,同时结构单元的特征尺寸也处于光刻技术易于加工的区间,因此拥有良好的大规模实际应用前景。

     

    Abstract: Metamaterial perfect absorber is a typical functional electromagnetic material and holds great potential in application fields such as highly efficient ulitization of solar energy. Up to date, most works are dovoted to the tunability of working wavelength as well as realization of dual-, triple- and even broad-band perfect absorption. However, applications such as laser protection require that the metamaterial peferct absorber can function at specific wavelength with narrow bandwidth, and work devoted to this direction is rather rare. In this work, based on a triple-layer structure made of Al back mirror–SiO2 spacer–Al disk, a narrow-band metamaterial perfect absorber working at 1 064 nm was proposed and studied by numerical simulations. It was found that, compared to utilizing the fundamental mode of plasmonic resonance of smaller structure unit, utilization of higher-order mode of larger structure unit allowed for a narrower bandwidth of perfect absorption at designated wavelength. In addition, through systematic study of the geometric parameters such as the thickness of spacer layer, the diameter of the Al disk and the period of the lattice, the influence of such geometric paremeters on the optical response of metamaterial perfect absorber was revealed. Based on these findings and through optimization of geometric parameters, a high performance and narrow-band metamaterial perfect absorber design was obtained with a zero transmittance, a reflectance as low as 8.56×10−5 and a bandwidth of about 55 nm. Since all the materials involved are CMOS compatible, and the characteristic dimensions of the structure unit lie within the range of feasible fabrication method such as optical lithography, the metamateiral perfect absorber proposed here holds good promise towards large-scale real-world applications.

     

/

返回文章
返回