Abstract:
During the operational process of high power laser system, the uniformity of focal spot will impact the experiment and application seriously. To improve the focal spot quality, a continuous phase plate (CPP) should be used in the light path for far field beam smoothing. As a phase element CPP has different functions, such as decoherece and beam shaping. In this paper the smoothing performance of CPP was concerned. Good performance of beam smoothing depended on a reasonable surface figure distribution. According to the random characteristic of phase plate surface, the statistical method was employed to study the beam smoothing mechanism. According to the relationship between the probability density and far field histogram of the surface of CPP, the expression of the superposition intensity envelope of distorted beam and CPP surface figure was deduced. The formula proved that the function of a CPP for focal spot was just a convolution filtering. So the mathematical explanation on the beam smoothing mechanism was achieved. Furthermore, using this analysis model the reason that the CPP with short correlation length will have the capability of better beam smoothing was explained theoretically. Numerical simulations were done to show the beam smoothing performance of CPP. The far field histograms with different distorted beams are calculated and compared. The results show that after the phase additive of the distorted beam and CPP a new wavefront was generated. If the law of large numbers is satisfied, when the correlation length and the gradient of the wavefront is small, the light focus spot distribution is smooth and uniform. The statistical geometrical optical method used in this paper can reduce the analysis difficulty on the phase additive effectively.