915 nm半导体激光器新型腔面钝化工艺

915 nm semiconductor laser new type facet passivation technology

  • 摘要: 针对半导体激光器腔面光学灾变损伤的发生机制,设计了一种单管芯半导体激光器腔面真空解理钝化工艺方法。在真空中解理并且直接对半导体激光器腔面蒸镀钝化膜,提出用ZnSe材料作为单管芯半导体激光器真空解理工艺的钝化膜材料,发现利用真空解理钝化工艺方法和ZnSe材料作为钝化膜可以使器件输出功率提高23%。通过电致发光(EL)对半导体激光器腔面损伤机理进行分析。进一步说明对915 nm半导体激光器制备工艺中引入真空解理钝化工艺技术并且选择ZnSe作为钝化膜可以有效保护半导体激光器腔面,提高器件可靠性。

     

    Abstract: Aiming at the mechanism of catastrophic optical damage of semiconductor laser cavity surface, a single-chip semiconductor laser cavity surface vacuum cleavage passivation process was designed. The cleavage process in vacuum and direct evaporation of passivation film on the surface of semiconductor laser cavity was proposed. Using ZnSe material as the passivation film material for the vacuum cleavage process of single-die semiconductor laser, it was found that the vacuum cleavage passivation process and ZnSe material could be used as the passivation film to increase the output power of the device by 23%. The mechanism of semiconductor laser cavity surface damage was analyzed by electroluminescence (EL). It is further explained that the introduction of vacuum cleavage passivation technology in the preparation process of 915 nm semiconductor laser and the selection of ZnSe as the passivation film can effectively protect the cavity surface of the semiconductor laser and improve device reliability.

     

/

返回文章
返回