Abstract:
Bionic moth-eye is a kind of micro-nano structure with anti-reflection ability. Random distributed double-sided bionic moth-eye antireflective nanoscale lens was manufactured by chemical precipitation silver method, with an average transmittance of over 97%. It could be concluded that the transmittance of random moth-eye structure was better than that of period structure at the design wavelengths by analyzing the transmittance of both period and random moth-eye structures under the conditions of the same parameter combinations. The moth-eye lens was used to calculate the related parameters, and a whole moth-eye imaging lens was designed by using CODE V platform. This moth-eye optical system has an effective focal length of 25.5 mm, an F-number of 5, a field of view of 13, a spectral range of 400-700 nm. Compared with conventional coating lens, the moth-eye lens has a good inhibition effect on the ghosts, edge glare and other stray light by performing the imaging contrast test.