波导栅型微孔阵列的自触发瞬时选通成像研究(特邀)

Study on self-triggered instantaneous gating imaging of waveguide grating microarray (invited)

  • 摘要: 针对传统选通成像面临的诸多技术约束与技术瓶颈,分别从自触发选通与瞬时成像的角度提出了一种波导栅型微孔阵列的自触发瞬时选通成像。文中不但给出了完整的自触发选通成像原理与器件模型,而且还指出钙钛矿量子点薄膜在瞬时选通成像的优势。最后在真空测试系统中分别对波导栅型微孔阵列的空间调制效果、电子束泵浦成像效果以及钙钛矿量子点薄膜瞬时发光的效果加以标定与建模,并通过实验证明了该技术方案的可行性。

     

    Abstract: In view of many technical constraints and techcical bottlenecks in traditional gating imaging system, a novel self-triggering instantaneous gating imaging of waveguide grating microarray that considered self-triggered gating and instantaneous imaging was proposed. This article not only showed a complete self-triggered gating imaging principle and device model, but also explained the advantages of quantum dot films based on perovskite in transient gating imaging. In the end, the spatial modulation effect of waveguide gratings microarray, electron beams, electronically pumped imaging and the instantaneous luminescence effect of quantum dot film based on perovskite, were calibrated and modeled in the vacuum test system. The feasibility of the technical scheme was proved by experiments.

     

/

返回文章
返回